| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumsplit.1 |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
esumsplit.2 |
⊢ Ⅎ 𝑘 𝐴 |
| 3 |
|
esumsplit.3 |
⊢ Ⅎ 𝑘 𝐵 |
| 4 |
|
esumsplit.4 |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 5 |
|
esumsplit.5 |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 6 |
|
esumsplit.6 |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 7 |
|
esumsplit.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 8 |
|
esumsplit.8 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 9 |
2 3
|
nfun |
⊢ Ⅎ 𝑘 ( 𝐴 ∪ 𝐵 ) |
| 10 |
|
unexg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 11 |
4 5 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 12 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) |
| 13 |
7 8
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 14 |
12 13
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 15 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 16 |
|
xrge0plusg |
⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 17 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
| 19 |
|
xrge0tmd |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopMnd |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopMnd ) |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) |
| 22 |
|
eqid |
⊢ ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) = ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) |
| 23 |
1 9 21 14 22
|
fmptdF |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) : ( 𝐴 ∪ 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
| 24 |
1 2 4 7
|
esumel |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) |
| 25 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 26 |
9 2
|
resmptf |
⊢ ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → ( ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 27 |
25 26
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) |
| 29 |
24 28
|
eleqtrrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐴 ) ) ) |
| 30 |
1 3 5 8
|
esumel |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 31 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 32 |
9 3
|
resmptf |
⊢ ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) → ( ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) |
| 33 |
31 32
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 35 |
30 34
|
eleqtrrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ↾ 𝐵 ) ) ) |
| 36 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) ) |
| 37 |
15 16 18 20 11 23 29 35 6 36
|
tsmssplit |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐶 +𝑒 Σ* 𝑘 ∈ 𝐵 𝐶 ) ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↦ 𝐶 ) ) ) |
| 38 |
1 9 11 14 37
|
esumid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 = ( Σ* 𝑘 ∈ 𝐴 𝐶 +𝑒 Σ* 𝑘 ∈ 𝐵 𝐶 ) ) |