Step |
Hyp |
Ref |
Expression |
1 |
|
esumsplit.1 |
|- F/ k ph |
2 |
|
esumsplit.2 |
|- F/_ k A |
3 |
|
esumsplit.3 |
|- F/_ k B |
4 |
|
esumsplit.4 |
|- ( ph -> A e. _V ) |
5 |
|
esumsplit.5 |
|- ( ph -> B e. _V ) |
6 |
|
esumsplit.6 |
|- ( ph -> ( A i^i B ) = (/) ) |
7 |
|
esumsplit.7 |
|- ( ( ph /\ k e. A ) -> C e. ( 0 [,] +oo ) ) |
8 |
|
esumsplit.8 |
|- ( ( ph /\ k e. B ) -> C e. ( 0 [,] +oo ) ) |
9 |
2 3
|
nfun |
|- F/_ k ( A u. B ) |
10 |
|
unexg |
|- ( ( A e. _V /\ B e. _V ) -> ( A u. B ) e. _V ) |
11 |
4 5 10
|
syl2anc |
|- ( ph -> ( A u. B ) e. _V ) |
12 |
|
elun |
|- ( k e. ( A u. B ) <-> ( k e. A \/ k e. B ) ) |
13 |
7 8
|
jaodan |
|- ( ( ph /\ ( k e. A \/ k e. B ) ) -> C e. ( 0 [,] +oo ) ) |
14 |
12 13
|
sylan2b |
|- ( ( ph /\ k e. ( A u. B ) ) -> C e. ( 0 [,] +oo ) ) |
15 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
16 |
|
xrge0plusg |
|- +e = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
17 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
18 |
17
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
19 |
|
xrge0tmd |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopMnd |
20 |
19
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopMnd ) |
21 |
|
nfcv |
|- F/_ k ( 0 [,] +oo ) |
22 |
|
eqid |
|- ( k e. ( A u. B ) |-> C ) = ( k e. ( A u. B ) |-> C ) |
23 |
1 9 21 14 22
|
fmptdF |
|- ( ph -> ( k e. ( A u. B ) |-> C ) : ( A u. B ) --> ( 0 [,] +oo ) ) |
24 |
1 2 4 7
|
esumel |
|- ( ph -> sum* k e. A C e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) ) |
25 |
|
ssun1 |
|- A C_ ( A u. B ) |
26 |
9 2
|
resmptf |
|- ( A C_ ( A u. B ) -> ( ( k e. ( A u. B ) |-> C ) |` A ) = ( k e. A |-> C ) ) |
27 |
25 26
|
mp1i |
|- ( ph -> ( ( k e. ( A u. B ) |-> C ) |` A ) = ( k e. A |-> C ) ) |
28 |
27
|
oveq2d |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( ( k e. ( A u. B ) |-> C ) |` A ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) ) |
29 |
24 28
|
eleqtrrd |
|- ( ph -> sum* k e. A C e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( ( k e. ( A u. B ) |-> C ) |` A ) ) ) |
30 |
1 3 5 8
|
esumel |
|- ( ph -> sum* k e. B C e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> C ) ) ) |
31 |
|
ssun2 |
|- B C_ ( A u. B ) |
32 |
9 3
|
resmptf |
|- ( B C_ ( A u. B ) -> ( ( k e. ( A u. B ) |-> C ) |` B ) = ( k e. B |-> C ) ) |
33 |
31 32
|
mp1i |
|- ( ph -> ( ( k e. ( A u. B ) |-> C ) |` B ) = ( k e. B |-> C ) ) |
34 |
33
|
oveq2d |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( ( k e. ( A u. B ) |-> C ) |` B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> C ) ) ) |
35 |
30 34
|
eleqtrrd |
|- ( ph -> sum* k e. B C e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( ( k e. ( A u. B ) |-> C ) |` B ) ) ) |
36 |
|
eqidd |
|- ( ph -> ( A u. B ) = ( A u. B ) ) |
37 |
15 16 18 20 11 23 29 35 6 36
|
tsmssplit |
|- ( ph -> ( sum* k e. A C +e sum* k e. B C ) e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. ( A u. B ) |-> C ) ) ) |
38 |
1 9 11 14 37
|
esumid |
|- ( ph -> sum* k e. ( A u. B ) C = ( sum* k e. A C +e sum* k e. B C ) ) |