Step |
Hyp |
Ref |
Expression |
1 |
|
esummono.f |
|- F/ k ph |
2 |
|
esummono.c |
|- ( ph -> C e. V ) |
3 |
|
esummono.b |
|- ( ( ph /\ k e. C ) -> B e. ( 0 [,] +oo ) ) |
4 |
|
esummono.a |
|- ( ph -> A C_ C ) |
5 |
2
|
difexd |
|- ( ph -> ( C \ A ) e. _V ) |
6 |
|
simpr |
|- ( ( ph /\ k e. ( C \ A ) ) -> k e. ( C \ A ) ) |
7 |
6
|
eldifad |
|- ( ( ph /\ k e. ( C \ A ) ) -> k e. C ) |
8 |
7 3
|
syldan |
|- ( ( ph /\ k e. ( C \ A ) ) -> B e. ( 0 [,] +oo ) ) |
9 |
8
|
ex |
|- ( ph -> ( k e. ( C \ A ) -> B e. ( 0 [,] +oo ) ) ) |
10 |
1 9
|
ralrimi |
|- ( ph -> A. k e. ( C \ A ) B e. ( 0 [,] +oo ) ) |
11 |
|
nfcv |
|- F/_ k ( C \ A ) |
12 |
11
|
esumcl |
|- ( ( ( C \ A ) e. _V /\ A. k e. ( C \ A ) B e. ( 0 [,] +oo ) ) -> sum* k e. ( C \ A ) B e. ( 0 [,] +oo ) ) |
13 |
5 10 12
|
syl2anc |
|- ( ph -> sum* k e. ( C \ A ) B e. ( 0 [,] +oo ) ) |
14 |
|
elxrge0 |
|- ( sum* k e. ( C \ A ) B e. ( 0 [,] +oo ) <-> ( sum* k e. ( C \ A ) B e. RR* /\ 0 <_ sum* k e. ( C \ A ) B ) ) |
15 |
14
|
simprbi |
|- ( sum* k e. ( C \ A ) B e. ( 0 [,] +oo ) -> 0 <_ sum* k e. ( C \ A ) B ) |
16 |
13 15
|
syl |
|- ( ph -> 0 <_ sum* k e. ( C \ A ) B ) |
17 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
18 |
2 4
|
ssexd |
|- ( ph -> A e. _V ) |
19 |
4
|
sselda |
|- ( ( ph /\ k e. A ) -> k e. C ) |
20 |
19 3
|
syldan |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
21 |
20
|
ex |
|- ( ph -> ( k e. A -> B e. ( 0 [,] +oo ) ) ) |
22 |
1 21
|
ralrimi |
|- ( ph -> A. k e. A B e. ( 0 [,] +oo ) ) |
23 |
|
nfcv |
|- F/_ k A |
24 |
23
|
esumcl |
|- ( ( A e. _V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) ) |
25 |
18 22 24
|
syl2anc |
|- ( ph -> sum* k e. A B e. ( 0 [,] +oo ) ) |
26 |
17 25
|
sselid |
|- ( ph -> sum* k e. A B e. RR* ) |
27 |
17 13
|
sselid |
|- ( ph -> sum* k e. ( C \ A ) B e. RR* ) |
28 |
|
xraddge02 |
|- ( ( sum* k e. A B e. RR* /\ sum* k e. ( C \ A ) B e. RR* ) -> ( 0 <_ sum* k e. ( C \ A ) B -> sum* k e. A B <_ ( sum* k e. A B +e sum* k e. ( C \ A ) B ) ) ) |
29 |
26 27 28
|
syl2anc |
|- ( ph -> ( 0 <_ sum* k e. ( C \ A ) B -> sum* k e. A B <_ ( sum* k e. A B +e sum* k e. ( C \ A ) B ) ) ) |
30 |
16 29
|
mpd |
|- ( ph -> sum* k e. A B <_ ( sum* k e. A B +e sum* k e. ( C \ A ) B ) ) |
31 |
|
disjdif |
|- ( A i^i ( C \ A ) ) = (/) |
32 |
31
|
a1i |
|- ( ph -> ( A i^i ( C \ A ) ) = (/) ) |
33 |
1 23 11 18 5 32 20 8
|
esumsplit |
|- ( ph -> sum* k e. ( A u. ( C \ A ) ) B = ( sum* k e. A B +e sum* k e. ( C \ A ) B ) ) |
34 |
|
undif |
|- ( A C_ C <-> ( A u. ( C \ A ) ) = C ) |
35 |
4 34
|
sylib |
|- ( ph -> ( A u. ( C \ A ) ) = C ) |
36 |
1 35
|
esumeq1d |
|- ( ph -> sum* k e. ( A u. ( C \ A ) ) B = sum* k e. C B ) |
37 |
33 36
|
eqtr3d |
|- ( ph -> ( sum* k e. A B +e sum* k e. ( C \ A ) B ) = sum* k e. C B ) |
38 |
30 37
|
breqtrd |
|- ( ph -> sum* k e. A B <_ sum* k e. C B ) |