Metamath Proof Explorer


Theorem esummono

Description: Extended sum is monotonic. (Contributed by Thierry Arnoux, 19-Oct-2017)

Ref Expression
Hypotheses esummono.f k φ
esummono.c φ C V
esummono.b φ k C B 0 +∞
esummono.a φ A C
Assertion esummono φ * k A B * k C B

Proof

Step Hyp Ref Expression
1 esummono.f k φ
2 esummono.c φ C V
3 esummono.b φ k C B 0 +∞
4 esummono.a φ A C
5 2 difexd φ C A V
6 simpr φ k C A k C A
7 6 eldifad φ k C A k C
8 7 3 syldan φ k C A B 0 +∞
9 8 ex φ k C A B 0 +∞
10 1 9 ralrimi φ k C A B 0 +∞
11 nfcv _ k C A
12 11 esumcl C A V k C A B 0 +∞ * k C A B 0 +∞
13 5 10 12 syl2anc φ * k C A B 0 +∞
14 elxrge0 * k C A B 0 +∞ * k C A B * 0 * k C A B
15 14 simprbi * k C A B 0 +∞ 0 * k C A B
16 13 15 syl φ 0 * k C A B
17 iccssxr 0 +∞ *
18 2 4 ssexd φ A V
19 4 sselda φ k A k C
20 19 3 syldan φ k A B 0 +∞
21 20 ex φ k A B 0 +∞
22 1 21 ralrimi φ k A B 0 +∞
23 nfcv _ k A
24 23 esumcl A V k A B 0 +∞ * k A B 0 +∞
25 18 22 24 syl2anc φ * k A B 0 +∞
26 17 25 sselid φ * k A B *
27 17 13 sselid φ * k C A B *
28 xraddge02 * k A B * * k C A B * 0 * k C A B * k A B * k A B + 𝑒 * k C A B
29 26 27 28 syl2anc φ 0 * k C A B * k A B * k A B + 𝑒 * k C A B
30 16 29 mpd φ * k A B * k A B + 𝑒 * k C A B
31 disjdif A C A =
32 31 a1i φ A C A =
33 1 23 11 18 5 32 20 8 esumsplit φ * k A C A B = * k A B + 𝑒 * k C A B
34 undif A C A C A = C
35 4 34 sylib φ A C A = C
36 1 35 esumeq1d φ * k A C A B = * k C B
37 33 36 eqtr3d φ * k A B + 𝑒 * k C A B = * k C B
38 30 37 breqtrd φ * k A B * k C B