Metamath Proof Explorer


Theorem esumsplit

Description: Split an extended sum into two parts. (Contributed by Thierry Arnoux, 9-May-2017)

Ref Expression
Hypotheses esumsplit.1 kφ
esumsplit.2 _kA
esumsplit.3 _kB
esumsplit.4 φAV
esumsplit.5 φBV
esumsplit.6 φAB=
esumsplit.7 φkAC0+∞
esumsplit.8 φkBC0+∞
Assertion esumsplit φ*kABC=*kAC+𝑒*kBC

Proof

Step Hyp Ref Expression
1 esumsplit.1 kφ
2 esumsplit.2 _kA
3 esumsplit.3 _kB
4 esumsplit.4 φAV
5 esumsplit.5 φBV
6 esumsplit.6 φAB=
7 esumsplit.7 φkAC0+∞
8 esumsplit.8 φkBC0+∞
9 2 3 nfun _kAB
10 unexg AVBVABV
11 4 5 10 syl2anc φABV
12 elun kABkAkB
13 7 8 jaodan φkAkBC0+∞
14 12 13 sylan2b φkABC0+∞
15 xrge0base 0+∞=Base𝑠*𝑠0+∞
16 xrge0plusg +𝑒=+𝑠*𝑠0+∞
17 xrge0cmn 𝑠*𝑠0+∞CMnd
18 17 a1i φ𝑠*𝑠0+∞CMnd
19 xrge0tmd 𝑠*𝑠0+∞TopMnd
20 19 a1i φ𝑠*𝑠0+∞TopMnd
21 nfcv _k0+∞
22 eqid kABC=kABC
23 1 9 21 14 22 fmptdF φkABC:AB0+∞
24 1 2 4 7 esumel φ*kAC𝑠*𝑠0+∞tsumskAC
25 ssun1 AAB
26 9 2 resmptf AABkABCA=kAC
27 25 26 mp1i φkABCA=kAC
28 27 oveq2d φ𝑠*𝑠0+∞tsumskABCA=𝑠*𝑠0+∞tsumskAC
29 24 28 eleqtrrd φ*kAC𝑠*𝑠0+∞tsumskABCA
30 1 3 5 8 esumel φ*kBC𝑠*𝑠0+∞tsumskBC
31 ssun2 BAB
32 9 3 resmptf BABkABCB=kBC
33 31 32 mp1i φkABCB=kBC
34 33 oveq2d φ𝑠*𝑠0+∞tsumskABCB=𝑠*𝑠0+∞tsumskBC
35 30 34 eleqtrrd φ*kBC𝑠*𝑠0+∞tsumskABCB
36 eqidd φAB=AB
37 15 16 18 20 11 23 29 35 6 36 tsmssplit φ*kAC+𝑒*kBC𝑠*𝑠0+∞tsumskABC
38 1 9 11 14 37 esumid φ*kABC=*kAC+𝑒*kBC