Description: Split an extended sum into two parts. (Contributed by Thierry Arnoux, 9-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumsplit.1 | |
|
esumsplit.2 | |
||
esumsplit.3 | |
||
esumsplit.4 | |
||
esumsplit.5 | |
||
esumsplit.6 | |
||
esumsplit.7 | |
||
esumsplit.8 | |
||
Assertion | esumsplit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumsplit.1 | |
|
2 | esumsplit.2 | |
|
3 | esumsplit.3 | |
|
4 | esumsplit.4 | |
|
5 | esumsplit.5 | |
|
6 | esumsplit.6 | |
|
7 | esumsplit.7 | |
|
8 | esumsplit.8 | |
|
9 | 2 3 | nfun | |
10 | unexg | |
|
11 | 4 5 10 | syl2anc | |
12 | elun | |
|
13 | 7 8 | jaodan | |
14 | 12 13 | sylan2b | |
15 | xrge0base | |
|
16 | xrge0plusg | |
|
17 | xrge0cmn | |
|
18 | 17 | a1i | |
19 | xrge0tmd | |
|
20 | 19 | a1i | |
21 | nfcv | |
|
22 | eqid | |
|
23 | 1 9 21 14 22 | fmptdF | |
24 | 1 2 4 7 | esumel | |
25 | ssun1 | |
|
26 | 9 2 | resmptf | |
27 | 25 26 | mp1i | |
28 | 27 | oveq2d | |
29 | 24 28 | eleqtrrd | |
30 | 1 3 5 8 | esumel | |
31 | ssun2 | |
|
32 | 9 3 | resmptf | |
33 | 31 32 | mp1i | |
34 | 33 | oveq2d | |
35 | 30 34 | eleqtrrd | |
36 | eqidd | |
|
37 | 15 16 18 20 11 23 29 35 6 36 | tsmssplit | |
38 | 1 9 11 14 37 | esumid | |