Metamath Proof Explorer


Theorem resmptf

Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017)

Ref Expression
Hypotheses resmptf.a _xA
resmptf.b _xB
Assertion resmptf BAxACB=xBC

Proof

Step Hyp Ref Expression
1 resmptf.a _xA
2 resmptf.b _xB
3 resmpt BAyAy/xCB=yBy/xC
4 nfcv _yA
5 nfcv _yC
6 nfcsb1v _xy/xC
7 csbeq1a x=yC=y/xC
8 1 4 5 6 7 cbvmptf xAC=yAy/xC
9 8 reseq1i xACB=yAy/xCB
10 nfcv _yB
11 2 10 5 6 7 cbvmptf xBC=yBy/xC
12 3 9 11 3eqtr4g BAxACB=xBC