| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							resmptf.a | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							resmptf.b | 
							⊢ Ⅎ 𝑥 𝐵  | 
						
						
							| 3 | 
							
								
							 | 
							resmpt | 
							⊢ ( 𝐵  ⊆  𝐴  →  ( ( 𝑦  ∈  𝐴  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  ↾  𝐵 )  =  ( 𝑦  ∈  𝐵  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑦 𝐴  | 
						
						
							| 5 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑦 𝐶  | 
						
						
							| 6 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐶  | 
						
						
							| 7 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑥  =  𝑦  →  𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  | 
						
						
							| 8 | 
							
								1 4 5 6 7
							 | 
							cbvmptf | 
							⊢ ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑦  ∈  𝐴  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  | 
						
						
							| 9 | 
							
								8
							 | 
							reseq1i | 
							⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  𝐵 )  =  ( ( 𝑦  ∈  𝐴  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  ↾  𝐵 )  | 
						
						
							| 10 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑦 𝐵  | 
						
						
							| 11 | 
							
								2 10 5 6 7
							 | 
							cbvmptf | 
							⊢ ( 𝑥  ∈  𝐵  ↦  𝐶 )  =  ( 𝑦  ∈  𝐵  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  | 
						
						
							| 12 | 
							
								3 9 11
							 | 
							3eqtr4g | 
							⊢ ( 𝐵  ⊆  𝐴  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↾  𝐵 )  =  ( 𝑥  ∈  𝐵  ↦  𝐶 ) )  |