| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							resmptf.a | 
							 |-  F/_ x A  | 
						
						
							| 2 | 
							
								
							 | 
							resmptf.b | 
							 |-  F/_ x B  | 
						
						
							| 3 | 
							
								
							 | 
							resmpt | 
							 |-  ( B C_ A -> ( ( y e. A |-> [_ y / x ]_ C ) |` B ) = ( y e. B |-> [_ y / x ]_ C ) )  | 
						
						
							| 4 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ y A  | 
						
						
							| 5 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ y C  | 
						
						
							| 6 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ x [_ y / x ]_ C  | 
						
						
							| 7 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( x = y -> C = [_ y / x ]_ C )  | 
						
						
							| 8 | 
							
								1 4 5 6 7
							 | 
							cbvmptf | 
							 |-  ( x e. A |-> C ) = ( y e. A |-> [_ y / x ]_ C )  | 
						
						
							| 9 | 
							
								8
							 | 
							reseq1i | 
							 |-  ( ( x e. A |-> C ) |` B ) = ( ( y e. A |-> [_ y / x ]_ C ) |` B )  | 
						
						
							| 10 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ y B  | 
						
						
							| 11 | 
							
								2 10 5 6 7
							 | 
							cbvmptf | 
							 |-  ( x e. B |-> C ) = ( y e. B |-> [_ y / x ]_ C )  | 
						
						
							| 12 | 
							
								3 9 11
							 | 
							3eqtr4g | 
							 |-  ( B C_ A -> ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C ) )  |