Metamath Proof Explorer


Theorem esumel

Description: The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017)

Ref Expression
Hypotheses esumel.1 k φ
esumel.2 _ k A
esumel.3 φ A V
esumel.4 φ k A B 0 +∞
Assertion esumel φ * k A B 𝑠 * 𝑠 0 +∞ tsums k A B

Proof

Step Hyp Ref Expression
1 esumel.1 k φ
2 esumel.2 _ k A
3 esumel.3 φ A V
4 esumel.4 φ k A B 0 +∞
5 4 ex φ k A B 0 +∞
6 1 5 ralrimi φ k A B 0 +∞
7 2 esumcl A V k A B 0 +∞ * k A B 0 +∞
8 3 6 7 syl2anc φ * k A B 0 +∞
9 snidg * k A B 0 +∞ * k A B * k A B
10 8 9 syl φ * k A B * k A B
11 eqid 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
12 nfcv _ k 0 +∞
13 eqid k A B = k A B
14 1 2 12 4 13 fmptdF φ k A B : A 0 +∞
15 inss1 𝒫 A Fin 𝒫 A
16 simpr φ x 𝒫 A Fin x 𝒫 A Fin
17 15 16 sselid φ x 𝒫 A Fin x 𝒫 A
18 17 elpwid φ x 𝒫 A Fin x A
19 nfcv _ k x
20 2 19 resmptf x A k A B x = k x B
21 18 20 syl φ x 𝒫 A Fin k A B x = k x B
22 21 eqcomd φ x 𝒫 A Fin k x B = k A B x
23 22 oveq2d φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B = 𝑠 * 𝑠 0 +∞ k A B x
24 1 2 3 4 23 esumval φ * k A B = sup ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k A B x * <
25 11 3 14 24 xrge0tsmsd φ 𝑠 * 𝑠 0 +∞ tsums k A B = * k A B
26 10 25 eleqtrrd φ * k A B 𝑠 * 𝑠 0 +∞ tsums k A B