Metamath Proof Explorer


Theorem esumel

Description: The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017)

Ref Expression
Hypotheses esumel.1
|- F/ k ph
esumel.2
|- F/_ k A
esumel.3
|- ( ph -> A e. V )
esumel.4
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
Assertion esumel
|- ( ph -> sum* k e. A B e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) )

Proof

Step Hyp Ref Expression
1 esumel.1
 |-  F/ k ph
2 esumel.2
 |-  F/_ k A
3 esumel.3
 |-  ( ph -> A e. V )
4 esumel.4
 |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
5 4 ex
 |-  ( ph -> ( k e. A -> B e. ( 0 [,] +oo ) ) )
6 1 5 ralrimi
 |-  ( ph -> A. k e. A B e. ( 0 [,] +oo ) )
7 2 esumcl
 |-  ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) )
8 3 6 7 syl2anc
 |-  ( ph -> sum* k e. A B e. ( 0 [,] +oo ) )
9 snidg
 |-  ( sum* k e. A B e. ( 0 [,] +oo ) -> sum* k e. A B e. { sum* k e. A B } )
10 8 9 syl
 |-  ( ph -> sum* k e. A B e. { sum* k e. A B } )
11 eqid
 |-  ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) )
12 nfcv
 |-  F/_ k ( 0 [,] +oo )
13 eqid
 |-  ( k e. A |-> B ) = ( k e. A |-> B )
14 1 2 12 4 13 fmptdF
 |-  ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) )
15 inss1
 |-  ( ~P A i^i Fin ) C_ ~P A
16 simpr
 |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. ( ~P A i^i Fin ) )
17 15 16 sselid
 |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. ~P A )
18 17 elpwid
 |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x C_ A )
19 nfcv
 |-  F/_ k x
20 2 19 resmptf
 |-  ( x C_ A -> ( ( k e. A |-> B ) |` x ) = ( k e. x |-> B ) )
21 18 20 syl
 |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( ( k e. A |-> B ) |` x ) = ( k e. x |-> B ) )
22 21 eqcomd
 |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( k e. x |-> B ) = ( ( k e. A |-> B ) |` x ) )
23 22 oveq2d
 |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` x ) ) )
24 1 2 3 4 23 esumval
 |-  ( ph -> sum* k e. A B = sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` x ) ) ) , RR* , < ) )
25 11 3 14 24 xrge0tsmsd
 |-  ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = { sum* k e. A B } )
26 10 25 eleqtrrd
 |-  ( ph -> sum* k e. A B e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) )