Step |
Hyp |
Ref |
Expression |
1 |
|
esumel.1 |
|- F/ k ph |
2 |
|
esumel.2 |
|- F/_ k A |
3 |
|
esumel.3 |
|- ( ph -> A e. V ) |
4 |
|
esumel.4 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
5 |
4
|
ex |
|- ( ph -> ( k e. A -> B e. ( 0 [,] +oo ) ) ) |
6 |
1 5
|
ralrimi |
|- ( ph -> A. k e. A B e. ( 0 [,] +oo ) ) |
7 |
2
|
esumcl |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) ) |
8 |
3 6 7
|
syl2anc |
|- ( ph -> sum* k e. A B e. ( 0 [,] +oo ) ) |
9 |
|
snidg |
|- ( sum* k e. A B e. ( 0 [,] +oo ) -> sum* k e. A B e. { sum* k e. A B } ) |
10 |
8 9
|
syl |
|- ( ph -> sum* k e. A B e. { sum* k e. A B } ) |
11 |
|
eqid |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
12 |
|
nfcv |
|- F/_ k ( 0 [,] +oo ) |
13 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
14 |
1 2 12 4 13
|
fmptdF |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
15 |
|
inss1 |
|- ( ~P A i^i Fin ) C_ ~P A |
16 |
|
simpr |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. ( ~P A i^i Fin ) ) |
17 |
15 16
|
sselid |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. ~P A ) |
18 |
17
|
elpwid |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x C_ A ) |
19 |
|
nfcv |
|- F/_ k x |
20 |
2 19
|
resmptf |
|- ( x C_ A -> ( ( k e. A |-> B ) |` x ) = ( k e. x |-> B ) ) |
21 |
18 20
|
syl |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( ( k e. A |-> B ) |` x ) = ( k e. x |-> B ) ) |
22 |
21
|
eqcomd |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( k e. x |-> B ) = ( ( k e. A |-> B ) |` x ) ) |
23 |
22
|
oveq2d |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` x ) ) ) |
24 |
1 2 3 4 23
|
esumval |
|- ( ph -> sum* k e. A B = sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` x ) ) ) , RR* , < ) ) |
25 |
11 3 14 24
|
xrge0tsmsd |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = { sum* k e. A B } ) |
26 |
10 25
|
eleqtrrd |
|- ( ph -> sum* k e. A B e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) ) |