Step |
Hyp |
Ref |
Expression |
1 |
|
nftru |
|- F/ x T. |
2 |
|
nfcv |
|- F/_ x (/) |
3 |
|
0ex |
|- (/) e. _V |
4 |
3
|
a1i |
|- ( T. -> (/) e. _V ) |
5 |
|
ral0 |
|- A. x e. (/) A e. ( 0 [,] +oo ) |
6 |
5
|
a1i |
|- ( T. -> A. x e. (/) A e. ( 0 [,] +oo ) ) |
7 |
6
|
r19.21bi |
|- ( ( T. /\ x e. (/) ) -> A e. ( 0 [,] +oo ) ) |
8 |
|
pw0 |
|- ~P (/) = { (/) } |
9 |
8
|
ineq1i |
|- ( ~P (/) i^i Fin ) = ( { (/) } i^i Fin ) |
10 |
|
0fin |
|- (/) e. Fin |
11 |
|
snssi |
|- ( (/) e. Fin -> { (/) } C_ Fin ) |
12 |
|
df-ss |
|- ( { (/) } C_ Fin <-> ( { (/) } i^i Fin ) = { (/) } ) |
13 |
11 12
|
sylib |
|- ( (/) e. Fin -> ( { (/) } i^i Fin ) = { (/) } ) |
14 |
10 13
|
ax-mp |
|- ( { (/) } i^i Fin ) = { (/) } |
15 |
9 14
|
eqtri |
|- ( ~P (/) i^i Fin ) = { (/) } |
16 |
15
|
eleq2i |
|- ( y e. ( ~P (/) i^i Fin ) <-> y e. { (/) } ) |
17 |
|
velsn |
|- ( y e. { (/) } <-> y = (/) ) |
18 |
16 17
|
sylbb |
|- ( y e. ( ~P (/) i^i Fin ) -> y = (/) ) |
19 |
18
|
mpteq1d |
|- ( y e. ( ~P (/) i^i Fin ) -> ( x e. y |-> A ) = ( x e. (/) |-> A ) ) |
20 |
|
mpt0 |
|- ( x e. (/) |-> A ) = (/) |
21 |
19 20
|
eqtrdi |
|- ( y e. ( ~P (/) i^i Fin ) -> ( x e. y |-> A ) = (/) ) |
22 |
21
|
oveq2d |
|- ( y e. ( ~P (/) i^i Fin ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( x e. y |-> A ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum (/) ) ) |
23 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
24 |
23
|
gsum0 |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum (/) ) = 0 |
25 |
22 24
|
eqtrdi |
|- ( y e. ( ~P (/) i^i Fin ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( x e. y |-> A ) ) = 0 ) |
26 |
25
|
adantl |
|- ( ( T. /\ y e. ( ~P (/) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( x e. y |-> A ) ) = 0 ) |
27 |
1 2 4 7 26
|
esumval |
|- ( T. -> sum* x e. (/) A = sup ( ran ( y e. ( ~P (/) i^i Fin ) |-> 0 ) , RR* , < ) ) |
28 |
27
|
mptru |
|- sum* x e. (/) A = sup ( ran ( y e. ( ~P (/) i^i Fin ) |-> 0 ) , RR* , < ) |
29 |
|
fconstmpt |
|- ( ( ~P (/) i^i Fin ) X. { 0 } ) = ( y e. ( ~P (/) i^i Fin ) |-> 0 ) |
30 |
29
|
eqcomi |
|- ( y e. ( ~P (/) i^i Fin ) |-> 0 ) = ( ( ~P (/) i^i Fin ) X. { 0 } ) |
31 |
|
0xr |
|- 0 e. RR* |
32 |
31
|
rgenw |
|- A. y e. ( ~P (/) i^i Fin ) 0 e. RR* |
33 |
|
eqid |
|- ( y e. ( ~P (/) i^i Fin ) |-> 0 ) = ( y e. ( ~P (/) i^i Fin ) |-> 0 ) |
34 |
33
|
fnmpt |
|- ( A. y e. ( ~P (/) i^i Fin ) 0 e. RR* -> ( y e. ( ~P (/) i^i Fin ) |-> 0 ) Fn ( ~P (/) i^i Fin ) ) |
35 |
32 34
|
ax-mp |
|- ( y e. ( ~P (/) i^i Fin ) |-> 0 ) Fn ( ~P (/) i^i Fin ) |
36 |
3
|
snnz |
|- { (/) } =/= (/) |
37 |
15 36
|
eqnetri |
|- ( ~P (/) i^i Fin ) =/= (/) |
38 |
|
fconst5 |
|- ( ( ( y e. ( ~P (/) i^i Fin ) |-> 0 ) Fn ( ~P (/) i^i Fin ) /\ ( ~P (/) i^i Fin ) =/= (/) ) -> ( ( y e. ( ~P (/) i^i Fin ) |-> 0 ) = ( ( ~P (/) i^i Fin ) X. { 0 } ) <-> ran ( y e. ( ~P (/) i^i Fin ) |-> 0 ) = { 0 } ) ) |
39 |
35 37 38
|
mp2an |
|- ( ( y e. ( ~P (/) i^i Fin ) |-> 0 ) = ( ( ~P (/) i^i Fin ) X. { 0 } ) <-> ran ( y e. ( ~P (/) i^i Fin ) |-> 0 ) = { 0 } ) |
40 |
30 39
|
mpbi |
|- ran ( y e. ( ~P (/) i^i Fin ) |-> 0 ) = { 0 } |
41 |
40
|
supeq1i |
|- sup ( ran ( y e. ( ~P (/) i^i Fin ) |-> 0 ) , RR* , < ) = sup ( { 0 } , RR* , < ) |
42 |
|
xrltso |
|- < Or RR* |
43 |
|
supsn |
|- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
44 |
42 31 43
|
mp2an |
|- sup ( { 0 } , RR* , < ) = 0 |
45 |
28 41 44
|
3eqtri |
|- sum* x e. (/) A = 0 |