| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nftru |
⊢ Ⅎ 𝑥 ⊤ |
| 2 |
|
nfcv |
⊢ Ⅎ 𝑥 ∅ |
| 3 |
|
0ex |
⊢ ∅ ∈ V |
| 4 |
3
|
a1i |
⊢ ( ⊤ → ∅ ∈ V ) |
| 5 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ 𝐴 ∈ ( 0 [,] +∞ ) |
| 6 |
5
|
a1i |
⊢ ( ⊤ → ∀ 𝑥 ∈ ∅ 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 7 |
6
|
r19.21bi |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ∅ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 8 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
| 9 |
8
|
ineq1i |
⊢ ( 𝒫 ∅ ∩ Fin ) = ( { ∅ } ∩ Fin ) |
| 10 |
|
0fi |
⊢ ∅ ∈ Fin |
| 11 |
|
snssi |
⊢ ( ∅ ∈ Fin → { ∅ } ⊆ Fin ) |
| 12 |
|
dfss2 |
⊢ ( { ∅ } ⊆ Fin ↔ ( { ∅ } ∩ Fin ) = { ∅ } ) |
| 13 |
11 12
|
sylib |
⊢ ( ∅ ∈ Fin → ( { ∅ } ∩ Fin ) = { ∅ } ) |
| 14 |
10 13
|
ax-mp |
⊢ ( { ∅ } ∩ Fin ) = { ∅ } |
| 15 |
9 14
|
eqtri |
⊢ ( 𝒫 ∅ ∩ Fin ) = { ∅ } |
| 16 |
15
|
eleq2i |
⊢ ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↔ 𝑦 ∈ { ∅ } ) |
| 17 |
|
velsn |
⊢ ( 𝑦 ∈ { ∅ } ↔ 𝑦 = ∅ ) |
| 18 |
16 17
|
sylbb |
⊢ ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑦 = ∅ ) |
| 19 |
18
|
mpteq1d |
⊢ ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) → ( 𝑥 ∈ 𝑦 ↦ 𝐴 ) = ( 𝑥 ∈ ∅ ↦ 𝐴 ) ) |
| 20 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ 𝐴 ) = ∅ |
| 21 |
19 20
|
eqtrdi |
⊢ ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) → ( 𝑥 ∈ 𝑦 ↦ 𝐴 ) = ∅ ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑥 ∈ 𝑦 ↦ 𝐴 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ∅ ) ) |
| 23 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 24 |
23
|
gsum0 |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ∅ ) = 0 |
| 25 |
22 24
|
eqtrdi |
⊢ ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑥 ∈ 𝑦 ↦ 𝐴 ) ) = 0 ) |
| 26 |
25
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑥 ∈ 𝑦 ↦ 𝐴 ) ) = 0 ) |
| 27 |
1 2 4 7 26
|
esumval |
⊢ ( ⊤ → Σ* 𝑥 ∈ ∅ 𝐴 = sup ( ran ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) , ℝ* , < ) ) |
| 28 |
27
|
mptru |
⊢ Σ* 𝑥 ∈ ∅ 𝐴 = sup ( ran ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) , ℝ* , < ) |
| 29 |
|
fconstmpt |
⊢ ( ( 𝒫 ∅ ∩ Fin ) × { 0 } ) = ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) |
| 30 |
29
|
eqcomi |
⊢ ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) = ( ( 𝒫 ∅ ∩ Fin ) × { 0 } ) |
| 31 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 32 |
31
|
rgenw |
⊢ ∀ 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) 0 ∈ ℝ* |
| 33 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) = ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) |
| 34 |
33
|
fnmpt |
⊢ ( ∀ 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) 0 ∈ ℝ* → ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) Fn ( 𝒫 ∅ ∩ Fin ) ) |
| 35 |
32 34
|
ax-mp |
⊢ ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) Fn ( 𝒫 ∅ ∩ Fin ) |
| 36 |
3
|
snnz |
⊢ { ∅ } ≠ ∅ |
| 37 |
15 36
|
eqnetri |
⊢ ( 𝒫 ∅ ∩ Fin ) ≠ ∅ |
| 38 |
|
fconst5 |
⊢ ( ( ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) Fn ( 𝒫 ∅ ∩ Fin ) ∧ ( 𝒫 ∅ ∩ Fin ) ≠ ∅ ) → ( ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) = ( ( 𝒫 ∅ ∩ Fin ) × { 0 } ) ↔ ran ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) = { 0 } ) ) |
| 39 |
35 37 38
|
mp2an |
⊢ ( ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) = ( ( 𝒫 ∅ ∩ Fin ) × { 0 } ) ↔ ran ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) = { 0 } ) |
| 40 |
30 39
|
mpbi |
⊢ ran ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) = { 0 } |
| 41 |
40
|
supeq1i |
⊢ sup ( ran ( 𝑦 ∈ ( 𝒫 ∅ ∩ Fin ) ↦ 0 ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) |
| 42 |
|
xrltso |
⊢ < Or ℝ* |
| 43 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
| 44 |
42 31 43
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
| 45 |
28 41 44
|
3eqtri |
⊢ Σ* 𝑥 ∈ ∅ 𝐴 = 0 |