| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumval.p |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
esumval.0 |
⊢ Ⅎ 𝑘 𝐴 |
| 3 |
|
esumval.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
esumval.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 5 |
|
esumval.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝑥 ↦ 𝐵 ) ) = 𝐶 ) |
| 6 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐴 𝐵 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
| 7 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) |
| 9 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
| 10 |
1 2 8 4 9
|
fmptdF |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 11 |
|
inss1 |
⊢ ( 𝒫 𝐴 ∩ Fin ) ⊆ 𝒫 𝐴 |
| 12 |
11
|
sseli |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 13 |
12
|
elpwid |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ⊆ 𝐴 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ⊆ 𝐴 ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
| 16 |
2 15
|
resmptf |
⊢ ( 𝑥 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑥 ) = ( 𝑘 ∈ 𝑥 ↦ 𝐵 ) ) |
| 17 |
14 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑥 ) = ( 𝑘 ∈ 𝑥 ↦ 𝐵 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑥 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝑥 ↦ 𝐵 ) ) ) |
| 19 |
18 5
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐶 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑥 ) ) ) |
| 20 |
19
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 𝐶 ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑥 ) ) ) ) |
| 21 |
20
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 𝐶 ) = ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑥 ) ) ) ) |
| 22 |
21
|
supeq1d |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 𝐶 ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
| 23 |
7 3 10 22
|
xrge0tsmsd |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = { sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 𝐶 ) , ℝ* , < ) } ) |
| 24 |
23
|
unieqd |
⊢ ( 𝜑 → ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ∪ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 𝐶 ) , ℝ* , < ) } ) |
| 25 |
6 24
|
eqtrid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = ∪ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 𝐶 ) , ℝ* , < ) } ) |
| 26 |
|
xrltso |
⊢ < Or ℝ* |
| 27 |
26
|
supex |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 𝐶 ) , ℝ* , < ) ∈ V |
| 28 |
27
|
unisn |
⊢ ∪ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 𝐶 ) , ℝ* , < ) } = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 𝐶 ) , ℝ* , < ) |
| 29 |
25 28
|
eqtrdi |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 𝐶 ) , ℝ* , < ) ) |