Metamath Proof Explorer


Theorem esumnul

Description: Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017)

Ref Expression
Assertion esumnul *xA=0

Proof

Step Hyp Ref Expression
1 nftru x
2 nfcv _x
3 0ex V
4 3 a1i V
5 ral0 xA0+∞
6 5 a1i xA0+∞
7 6 r19.21bi xA0+∞
8 pw0 𝒫=
9 8 ineq1i 𝒫Fin=Fin
10 0fin Fin
11 snssi FinFin
12 df-ss FinFin=
13 11 12 sylib FinFin=
14 10 13 ax-mp Fin=
15 9 14 eqtri 𝒫Fin=
16 15 eleq2i y𝒫Finy
17 velsn yy=
18 16 17 sylbb y𝒫Finy=
19 18 mpteq1d y𝒫FinxyA=xA
20 mpt0 xA=
21 19 20 eqtrdi y𝒫FinxyA=
22 21 oveq2d y𝒫Fin𝑠*𝑠0+∞xyA=𝑠*𝑠0+∞
23 xrge00 0=0𝑠*𝑠0+∞
24 23 gsum0 𝑠*𝑠0+∞=0
25 22 24 eqtrdi y𝒫Fin𝑠*𝑠0+∞xyA=0
26 25 adantl y𝒫Fin𝑠*𝑠0+∞xyA=0
27 1 2 4 7 26 esumval *xA=suprany𝒫Fin0*<
28 27 mptru *xA=suprany𝒫Fin0*<
29 fconstmpt 𝒫Fin×0=y𝒫Fin0
30 29 eqcomi y𝒫Fin0=𝒫Fin×0
31 0xr 0*
32 31 rgenw y𝒫Fin0*
33 eqid y𝒫Fin0=y𝒫Fin0
34 33 fnmpt y𝒫Fin0*y𝒫Fin0Fn𝒫Fin
35 32 34 ax-mp y𝒫Fin0Fn𝒫Fin
36 3 snnz
37 15 36 eqnetri 𝒫Fin
38 fconst5 y𝒫Fin0Fn𝒫Fin𝒫Finy𝒫Fin0=𝒫Fin×0rany𝒫Fin0=0
39 35 37 38 mp2an y𝒫Fin0=𝒫Fin×0rany𝒫Fin0=0
40 30 39 mpbi rany𝒫Fin0=0
41 40 supeq1i suprany𝒫Fin0*<=sup0*<
42 xrltso <Or*
43 supsn <Or*0*sup0*<=0
44 42 31 43 mp2an sup0*<=0
45 28 41 44 3eqtri *xA=0