Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | esum0.k | |
|
Assertion | esum0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esum0.k | |
|
2 | 1 | nfel1 | |
3 | id | |
|
4 | 0e0iccpnf | |
|
5 | 4 | a1i | |
6 | xrge0cmn | |
|
7 | cmnmnd | |
|
8 | 6 7 | ax-mp | |
9 | vex | |
|
10 | xrge00 | |
|
11 | 10 | gsumz | |
12 | 8 9 11 | mp2an | |
13 | 12 | a1i | |
14 | 2 1 3 5 13 | esumval | |
15 | fconstmpt | |
|
16 | 15 | eqcomi | |
17 | 0xr | |
|
18 | 17 | rgenw | |
19 | eqid | |
|
20 | 19 | fnmpt | |
21 | 18 20 | ax-mp | |
22 | 0elpw | |
|
23 | 0fin | |
|
24 | elin | |
|
25 | 22 23 24 | mpbir2an | |
26 | 25 | ne0ii | |
27 | fconst5 | |
|
28 | 21 26 27 | mp2an | |
29 | 16 28 | mpbi | |
30 | 29 | a1i | |
31 | 30 | supeq1d | |
32 | xrltso | |
|
33 | supsn | |
|
34 | 32 17 33 | mp2an | |
35 | 31 34 | eqtrdi | |
36 | 14 35 | eqtrd | |