Metamath Proof Explorer


Theorem esum0

Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017)

Ref Expression
Hypothesis esum0.k _kA
Assertion esum0 AV*kA0=0

Proof

Step Hyp Ref Expression
1 esum0.k _kA
2 1 nfel1 kAV
3 id AVAV
4 0e0iccpnf 00+∞
5 4 a1i AVkA00+∞
6 xrge0cmn 𝑠*𝑠0+∞CMnd
7 cmnmnd 𝑠*𝑠0+∞CMnd𝑠*𝑠0+∞Mnd
8 6 7 ax-mp 𝑠*𝑠0+∞Mnd
9 vex xV
10 xrge00 0=0𝑠*𝑠0+∞
11 10 gsumz 𝑠*𝑠0+∞MndxV𝑠*𝑠0+∞kx0=0
12 8 9 11 mp2an 𝑠*𝑠0+∞kx0=0
13 12 a1i AVx𝒫AFin𝑠*𝑠0+∞kx0=0
14 2 1 3 5 13 esumval AV*kA0=supranx𝒫AFin0*<
15 fconstmpt 𝒫AFin×0=x𝒫AFin0
16 15 eqcomi x𝒫AFin0=𝒫AFin×0
17 0xr 0*
18 17 rgenw x𝒫AFin0*
19 eqid x𝒫AFin0=x𝒫AFin0
20 19 fnmpt x𝒫AFin0*x𝒫AFin0Fn𝒫AFin
21 18 20 ax-mp x𝒫AFin0Fn𝒫AFin
22 0elpw 𝒫A
23 0fin Fin
24 elin 𝒫AFin𝒫AFin
25 22 23 24 mpbir2an 𝒫AFin
26 25 ne0ii 𝒫AFin
27 fconst5 x𝒫AFin0Fn𝒫AFin𝒫AFinx𝒫AFin0=𝒫AFin×0ranx𝒫AFin0=0
28 21 26 27 mp2an x𝒫AFin0=𝒫AFin×0ranx𝒫AFin0=0
29 16 28 mpbi ranx𝒫AFin0=0
30 29 a1i AVranx𝒫AFin0=0
31 30 supeq1d AVsupranx𝒫AFin0*<=sup0*<
32 xrltso <Or*
33 supsn <Or*0*sup0*<=0
34 32 17 33 mp2an sup0*<=0
35 31 34 eqtrdi AVsupranx𝒫AFin0*<=0
36 14 35 eqtrd AV*kA0=0