Step |
Hyp |
Ref |
Expression |
1 |
|
esum0.k |
⊢ Ⅎ 𝑘 𝐴 |
2 |
1
|
nfel1 |
⊢ Ⅎ 𝑘 𝐴 ∈ 𝑉 |
3 |
|
id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) |
4 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
6 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
7 |
|
cmnmnd |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
8 |
6 7
|
ax-mp |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
9 |
|
vex |
⊢ 𝑥 ∈ V |
10 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
11 |
10
|
gsumz |
⊢ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ∧ 𝑥 ∈ V ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝑥 ↦ 0 ) ) = 0 ) |
12 |
8 9 11
|
mp2an |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝑥 ↦ 0 ) ) = 0 |
13 |
12
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝑥 ↦ 0 ) ) = 0 ) |
14 |
2 1 3 5 13
|
esumval |
⊢ ( 𝐴 ∈ 𝑉 → Σ* 𝑘 ∈ 𝐴 0 = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) , ℝ* , < ) ) |
15 |
|
fconstmpt |
⊢ ( ( 𝒫 𝐴 ∩ Fin ) × { 0 } ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) |
16 |
15
|
eqcomi |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = ( ( 𝒫 𝐴 ∩ Fin ) × { 0 } ) |
17 |
|
0xr |
⊢ 0 ∈ ℝ* |
18 |
17
|
rgenw |
⊢ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 0 ∈ ℝ* |
19 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) |
20 |
19
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 0 ∈ ℝ* → ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) Fn ( 𝒫 𝐴 ∩ Fin ) ) |
21 |
18 20
|
ax-mp |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) Fn ( 𝒫 𝐴 ∩ Fin ) |
22 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐴 |
23 |
|
0fin |
⊢ ∅ ∈ Fin |
24 |
|
elin |
⊢ ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin ) ) |
25 |
22 23 24
|
mpbir2an |
⊢ ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) |
26 |
25
|
ne0ii |
⊢ ( 𝒫 𝐴 ∩ Fin ) ≠ ∅ |
27 |
|
fconst5 |
⊢ ( ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) Fn ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝒫 𝐴 ∩ Fin ) ≠ ∅ ) → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = ( ( 𝒫 𝐴 ∩ Fin ) × { 0 } ) ↔ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = { 0 } ) ) |
28 |
21 26 27
|
mp2an |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = ( ( 𝒫 𝐴 ∩ Fin ) × { 0 } ) ↔ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = { 0 } ) |
29 |
16 28
|
mpbi |
⊢ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = { 0 } |
30 |
29
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = { 0 } ) |
31 |
30
|
supeq1d |
⊢ ( 𝐴 ∈ 𝑉 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) ) |
32 |
|
xrltso |
⊢ < Or ℝ* |
33 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
34 |
32 17 33
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
35 |
31 34
|
eqtrdi |
⊢ ( 𝐴 ∈ 𝑉 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) , ℝ* , < ) = 0 ) |
36 |
14 35
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → Σ* 𝑘 ∈ 𝐴 0 = 0 ) |