Metamath Proof Explorer


Theorem esum0

Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017)

Ref Expression
Hypothesis esum0.k 𝑘 𝐴
Assertion esum0 ( 𝐴𝑉 → Σ* 𝑘𝐴 0 = 0 )

Proof

Step Hyp Ref Expression
1 esum0.k 𝑘 𝐴
2 1 nfel1 𝑘 𝐴𝑉
3 id ( 𝐴𝑉𝐴𝑉 )
4 0e0iccpnf 0 ∈ ( 0 [,] +∞ )
5 4 a1i ( ( 𝐴𝑉𝑘𝐴 ) → 0 ∈ ( 0 [,] +∞ ) )
6 xrge0cmn ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd
7 cmnmnd ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd )
8 6 7 ax-mp ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd
9 vex 𝑥 ∈ V
10 xrge00 0 = ( 0g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
11 10 gsumz ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd ∧ 𝑥 ∈ V ) → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝑥 ↦ 0 ) ) = 0 )
12 8 9 11 mp2an ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝑥 ↦ 0 ) ) = 0
13 12 a1i ( ( 𝐴𝑉𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝑥 ↦ 0 ) ) = 0 )
14 2 1 3 5 13 esumval ( 𝐴𝑉 → Σ* 𝑘𝐴 0 = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) , ℝ* , < ) )
15 fconstmpt ( ( 𝒫 𝐴 ∩ Fin ) × { 0 } ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 )
16 15 eqcomi ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = ( ( 𝒫 𝐴 ∩ Fin ) × { 0 } )
17 0xr 0 ∈ ℝ*
18 17 rgenw 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 0 ∈ ℝ*
19 eqid ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 )
20 19 fnmpt ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 0 ∈ ℝ* → ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) Fn ( 𝒫 𝐴 ∩ Fin ) )
21 18 20 ax-mp ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) Fn ( 𝒫 𝐴 ∩ Fin )
22 0elpw ∅ ∈ 𝒫 𝐴
23 0fin ∅ ∈ Fin
24 elin ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin ) )
25 22 23 24 mpbir2an ∅ ∈ ( 𝒫 𝐴 ∩ Fin )
26 25 ne0ii ( 𝒫 𝐴 ∩ Fin ) ≠ ∅
27 fconst5 ( ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) Fn ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝒫 𝐴 ∩ Fin ) ≠ ∅ ) → ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = ( ( 𝒫 𝐴 ∩ Fin ) × { 0 } ) ↔ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = { 0 } ) )
28 21 26 27 mp2an ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = ( ( 𝒫 𝐴 ∩ Fin ) × { 0 } ) ↔ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = { 0 } )
29 16 28 mpbi ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = { 0 }
30 29 a1i ( 𝐴𝑉 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) = { 0 } )
31 30 supeq1d ( 𝐴𝑉 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) )
32 xrltso < Or ℝ*
33 supsn ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 )
34 32 17 33 mp2an sup ( { 0 } , ℝ* , < ) = 0
35 31 34 eqtrdi ( 𝐴𝑉 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ 0 ) , ℝ* , < ) = 0 )
36 14 35 eqtrd ( 𝐴𝑉 → Σ* 𝑘𝐴 0 = 0 )