Metamath Proof Explorer


Theorem esum0

Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017)

Ref Expression
Hypothesis esum0.k
|- F/_ k A
Assertion esum0
|- ( A e. V -> sum* k e. A 0 = 0 )

Proof

Step Hyp Ref Expression
1 esum0.k
 |-  F/_ k A
2 1 nfel1
 |-  F/ k A e. V
3 id
 |-  ( A e. V -> A e. V )
4 0e0iccpnf
 |-  0 e. ( 0 [,] +oo )
5 4 a1i
 |-  ( ( A e. V /\ k e. A ) -> 0 e. ( 0 [,] +oo ) )
6 xrge0cmn
 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd
7 cmnmnd
 |-  ( ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd )
8 6 7 ax-mp
 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd
9 vex
 |-  x e. _V
10 xrge00
 |-  0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) )
11 10 gsumz
 |-  ( ( ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd /\ x e. _V ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> 0 ) ) = 0 )
12 8 9 11 mp2an
 |-  ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> 0 ) ) = 0
13 12 a1i
 |-  ( ( A e. V /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> 0 ) ) = 0 )
14 2 1 3 5 13 esumval
 |-  ( A e. V -> sum* k e. A 0 = sup ( ran ( x e. ( ~P A i^i Fin ) |-> 0 ) , RR* , < ) )
15 fconstmpt
 |-  ( ( ~P A i^i Fin ) X. { 0 } ) = ( x e. ( ~P A i^i Fin ) |-> 0 )
16 15 eqcomi
 |-  ( x e. ( ~P A i^i Fin ) |-> 0 ) = ( ( ~P A i^i Fin ) X. { 0 } )
17 0xr
 |-  0 e. RR*
18 17 rgenw
 |-  A. x e. ( ~P A i^i Fin ) 0 e. RR*
19 eqid
 |-  ( x e. ( ~P A i^i Fin ) |-> 0 ) = ( x e. ( ~P A i^i Fin ) |-> 0 )
20 19 fnmpt
 |-  ( A. x e. ( ~P A i^i Fin ) 0 e. RR* -> ( x e. ( ~P A i^i Fin ) |-> 0 ) Fn ( ~P A i^i Fin ) )
21 18 20 ax-mp
 |-  ( x e. ( ~P A i^i Fin ) |-> 0 ) Fn ( ~P A i^i Fin )
22 0elpw
 |-  (/) e. ~P A
23 0fin
 |-  (/) e. Fin
24 elin
 |-  ( (/) e. ( ~P A i^i Fin ) <-> ( (/) e. ~P A /\ (/) e. Fin ) )
25 22 23 24 mpbir2an
 |-  (/) e. ( ~P A i^i Fin )
26 25 ne0ii
 |-  ( ~P A i^i Fin ) =/= (/)
27 fconst5
 |-  ( ( ( x e. ( ~P A i^i Fin ) |-> 0 ) Fn ( ~P A i^i Fin ) /\ ( ~P A i^i Fin ) =/= (/) ) -> ( ( x e. ( ~P A i^i Fin ) |-> 0 ) = ( ( ~P A i^i Fin ) X. { 0 } ) <-> ran ( x e. ( ~P A i^i Fin ) |-> 0 ) = { 0 } ) )
28 21 26 27 mp2an
 |-  ( ( x e. ( ~P A i^i Fin ) |-> 0 ) = ( ( ~P A i^i Fin ) X. { 0 } ) <-> ran ( x e. ( ~P A i^i Fin ) |-> 0 ) = { 0 } )
29 16 28 mpbi
 |-  ran ( x e. ( ~P A i^i Fin ) |-> 0 ) = { 0 }
30 29 a1i
 |-  ( A e. V -> ran ( x e. ( ~P A i^i Fin ) |-> 0 ) = { 0 } )
31 30 supeq1d
 |-  ( A e. V -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> 0 ) , RR* , < ) = sup ( { 0 } , RR* , < ) )
32 xrltso
 |-  < Or RR*
33 supsn
 |-  ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 )
34 32 17 33 mp2an
 |-  sup ( { 0 } , RR* , < ) = 0
35 31 34 eqtrdi
 |-  ( A e. V -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> 0 ) , RR* , < ) = 0 )
36 14 35 eqtrd
 |-  ( A e. V -> sum* k e. A 0 = 0 )