Step |
Hyp |
Ref |
Expression |
1 |
|
esum0.k |
|- F/_ k A |
2 |
1
|
nfel1 |
|- F/ k A e. V |
3 |
|
id |
|- ( A e. V -> A e. V ) |
4 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
5 |
4
|
a1i |
|- ( ( A e. V /\ k e. A ) -> 0 e. ( 0 [,] +oo ) ) |
6 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
7 |
|
cmnmnd |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
8 |
6 7
|
ax-mp |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd |
9 |
|
vex |
|- x e. _V |
10 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
11 |
10
|
gsumz |
|- ( ( ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd /\ x e. _V ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> 0 ) ) = 0 ) |
12 |
8 9 11
|
mp2an |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> 0 ) ) = 0 |
13 |
12
|
a1i |
|- ( ( A e. V /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> 0 ) ) = 0 ) |
14 |
2 1 3 5 13
|
esumval |
|- ( A e. V -> sum* k e. A 0 = sup ( ran ( x e. ( ~P A i^i Fin ) |-> 0 ) , RR* , < ) ) |
15 |
|
fconstmpt |
|- ( ( ~P A i^i Fin ) X. { 0 } ) = ( x e. ( ~P A i^i Fin ) |-> 0 ) |
16 |
15
|
eqcomi |
|- ( x e. ( ~P A i^i Fin ) |-> 0 ) = ( ( ~P A i^i Fin ) X. { 0 } ) |
17 |
|
0xr |
|- 0 e. RR* |
18 |
17
|
rgenw |
|- A. x e. ( ~P A i^i Fin ) 0 e. RR* |
19 |
|
eqid |
|- ( x e. ( ~P A i^i Fin ) |-> 0 ) = ( x e. ( ~P A i^i Fin ) |-> 0 ) |
20 |
19
|
fnmpt |
|- ( A. x e. ( ~P A i^i Fin ) 0 e. RR* -> ( x e. ( ~P A i^i Fin ) |-> 0 ) Fn ( ~P A i^i Fin ) ) |
21 |
18 20
|
ax-mp |
|- ( x e. ( ~P A i^i Fin ) |-> 0 ) Fn ( ~P A i^i Fin ) |
22 |
|
0elpw |
|- (/) e. ~P A |
23 |
|
0fin |
|- (/) e. Fin |
24 |
|
elin |
|- ( (/) e. ( ~P A i^i Fin ) <-> ( (/) e. ~P A /\ (/) e. Fin ) ) |
25 |
22 23 24
|
mpbir2an |
|- (/) e. ( ~P A i^i Fin ) |
26 |
25
|
ne0ii |
|- ( ~P A i^i Fin ) =/= (/) |
27 |
|
fconst5 |
|- ( ( ( x e. ( ~P A i^i Fin ) |-> 0 ) Fn ( ~P A i^i Fin ) /\ ( ~P A i^i Fin ) =/= (/) ) -> ( ( x e. ( ~P A i^i Fin ) |-> 0 ) = ( ( ~P A i^i Fin ) X. { 0 } ) <-> ran ( x e. ( ~P A i^i Fin ) |-> 0 ) = { 0 } ) ) |
28 |
21 26 27
|
mp2an |
|- ( ( x e. ( ~P A i^i Fin ) |-> 0 ) = ( ( ~P A i^i Fin ) X. { 0 } ) <-> ran ( x e. ( ~P A i^i Fin ) |-> 0 ) = { 0 } ) |
29 |
16 28
|
mpbi |
|- ran ( x e. ( ~P A i^i Fin ) |-> 0 ) = { 0 } |
30 |
29
|
a1i |
|- ( A e. V -> ran ( x e. ( ~P A i^i Fin ) |-> 0 ) = { 0 } ) |
31 |
30
|
supeq1d |
|- ( A e. V -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> 0 ) , RR* , < ) = sup ( { 0 } , RR* , < ) ) |
32 |
|
xrltso |
|- < Or RR* |
33 |
|
supsn |
|- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
34 |
32 17 33
|
mp2an |
|- sup ( { 0 } , RR* , < ) = 0 |
35 |
31 34
|
eqtrdi |
|- ( A e. V -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> 0 ) , RR* , < ) = 0 ) |
36 |
14 35
|
eqtrd |
|- ( A e. V -> sum* k e. A 0 = 0 ) |