| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumf1o.0 |
|- F/ n ph |
| 2 |
|
esumf1o.b |
|- F/_ n B |
| 3 |
|
esumf1o.d |
|- F/_ k D |
| 4 |
|
esumf1o.a |
|- F/_ n A |
| 5 |
|
esumf1o.c |
|- F/_ n C |
| 6 |
|
esumf1o.f |
|- F/_ n F |
| 7 |
|
esumf1o.1 |
|- ( k = G -> B = D ) |
| 8 |
|
esumf1o.2 |
|- ( ph -> A e. V ) |
| 9 |
|
esumf1o.3 |
|- ( ph -> F : C -1-1-onto-> A ) |
| 10 |
|
esumf1o.4 |
|- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) |
| 11 |
|
esumf1o.5 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 12 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 13 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
| 14 |
13
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 15 |
|
xrge0tps |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp |
| 16 |
15
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp ) |
| 17 |
11
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
| 18 |
12 14 16 8 17 9
|
tsmsf1o |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( ( k e. A |-> B ) o. F ) ) ) |
| 19 |
|
f1of |
|- ( F : C -1-1-onto-> A -> F : C --> A ) |
| 20 |
9 19
|
syl |
|- ( ph -> F : C --> A ) |
| 21 |
20
|
ffvelcdmda |
|- ( ( ph /\ n e. C ) -> ( F ` n ) e. A ) |
| 22 |
10 21
|
eqeltrrd |
|- ( ( ph /\ n e. C ) -> G e. A ) |
| 23 |
22
|
ex |
|- ( ph -> ( n e. C -> G e. A ) ) |
| 24 |
1 23
|
ralrimi |
|- ( ph -> A. n e. C G e. A ) |
| 25 |
5 6 20
|
feqmptdf |
|- ( ph -> F = ( n e. C |-> ( F ` n ) ) ) |
| 26 |
1 10
|
mpteq2da |
|- ( ph -> ( n e. C |-> ( F ` n ) ) = ( n e. C |-> G ) ) |
| 27 |
25 26
|
eqtrd |
|- ( ph -> F = ( n e. C |-> G ) ) |
| 28 |
|
eqidd |
|- ( ph -> ( k e. A |-> B ) = ( k e. A |-> B ) ) |
| 29 |
2 3 5 4 1 24 27 28 7
|
fmptcof2 |
|- ( ph -> ( ( k e. A |-> B ) o. F ) = ( n e. C |-> D ) ) |
| 30 |
29
|
oveq2d |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( ( k e. A |-> B ) o. F ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( n e. C |-> D ) ) ) |
| 31 |
18 30
|
eqtrd |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( n e. C |-> D ) ) ) |
| 32 |
31
|
unieqd |
|- ( ph -> U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( n e. C |-> D ) ) ) |
| 33 |
|
df-esum |
|- sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
| 34 |
|
df-esum |
|- sum* n e. C D = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( n e. C |-> D ) ) |
| 35 |
32 33 34
|
3eqtr4g |
|- ( ph -> sum* k e. A B = sum* n e. C D ) |