Step |
Hyp |
Ref |
Expression |
1 |
|
esumf1o.0 |
|- F/ n ph |
2 |
|
esumf1o.b |
|- F/_ n B |
3 |
|
esumf1o.d |
|- F/_ k D |
4 |
|
esumf1o.a |
|- F/_ n A |
5 |
|
esumf1o.c |
|- F/_ n C |
6 |
|
esumf1o.f |
|- F/_ n F |
7 |
|
esumf1o.1 |
|- ( k = G -> B = D ) |
8 |
|
esumf1o.2 |
|- ( ph -> A e. V ) |
9 |
|
esumf1o.3 |
|- ( ph -> F : C -1-1-onto-> A ) |
10 |
|
esumf1o.4 |
|- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) |
11 |
|
esumf1o.5 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
12 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
13 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
14 |
13
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
15 |
|
xrge0tps |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp |
16 |
15
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp ) |
17 |
11
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
18 |
12 14 16 8 17 9
|
tsmsf1o |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( ( k e. A |-> B ) o. F ) ) ) |
19 |
|
f1of |
|- ( F : C -1-1-onto-> A -> F : C --> A ) |
20 |
9 19
|
syl |
|- ( ph -> F : C --> A ) |
21 |
20
|
ffvelrnda |
|- ( ( ph /\ n e. C ) -> ( F ` n ) e. A ) |
22 |
10 21
|
eqeltrrd |
|- ( ( ph /\ n e. C ) -> G e. A ) |
23 |
22
|
ex |
|- ( ph -> ( n e. C -> G e. A ) ) |
24 |
1 23
|
ralrimi |
|- ( ph -> A. n e. C G e. A ) |
25 |
5 6 20
|
feqmptdf |
|- ( ph -> F = ( n e. C |-> ( F ` n ) ) ) |
26 |
1 10
|
mpteq2da |
|- ( ph -> ( n e. C |-> ( F ` n ) ) = ( n e. C |-> G ) ) |
27 |
25 26
|
eqtrd |
|- ( ph -> F = ( n e. C |-> G ) ) |
28 |
|
eqidd |
|- ( ph -> ( k e. A |-> B ) = ( k e. A |-> B ) ) |
29 |
2 3 5 4 1 24 27 28 7
|
fmptcof2 |
|- ( ph -> ( ( k e. A |-> B ) o. F ) = ( n e. C |-> D ) ) |
30 |
29
|
oveq2d |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( ( k e. A |-> B ) o. F ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( n e. C |-> D ) ) ) |
31 |
18 30
|
eqtrd |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( n e. C |-> D ) ) ) |
32 |
31
|
unieqd |
|- ( ph -> U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( n e. C |-> D ) ) ) |
33 |
|
df-esum |
|- sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
34 |
|
df-esum |
|- sum* n e. C D = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( n e. C |-> D ) ) |
35 |
32 33 34
|
3eqtr4g |
|- ( ph -> sum* k e. A B = sum* n e. C D ) |