| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumf1o.0 |
⊢ Ⅎ 𝑛 𝜑 |
| 2 |
|
esumf1o.b |
⊢ Ⅎ 𝑛 𝐵 |
| 3 |
|
esumf1o.d |
⊢ Ⅎ 𝑘 𝐷 |
| 4 |
|
esumf1o.a |
⊢ Ⅎ 𝑛 𝐴 |
| 5 |
|
esumf1o.c |
⊢ Ⅎ 𝑛 𝐶 |
| 6 |
|
esumf1o.f |
⊢ Ⅎ 𝑛 𝐹 |
| 7 |
|
esumf1o.1 |
⊢ ( 𝑘 = 𝐺 → 𝐵 = 𝐷 ) |
| 8 |
|
esumf1o.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 9 |
|
esumf1o.3 |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
| 10 |
|
esumf1o.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) = 𝐺 ) |
| 11 |
|
esumf1o.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 12 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 13 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
| 15 |
|
xrge0tps |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp ) |
| 17 |
11
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 18 |
12 14 16 8 17 9
|
tsmsf1o |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝐹 ) ) ) |
| 19 |
|
f1of |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
| 20 |
9 19
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
| 21 |
20
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) |
| 22 |
10 21
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝐺 ∈ 𝐴 ) |
| 23 |
22
|
ex |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐶 → 𝐺 ∈ 𝐴 ) ) |
| 24 |
1 23
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐶 𝐺 ∈ 𝐴 ) |
| 25 |
5 6 20
|
feqmptdf |
⊢ ( 𝜑 → 𝐹 = ( 𝑛 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑛 ) ) ) |
| 26 |
1 10
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑛 ∈ 𝐶 ↦ 𝐺 ) ) |
| 27 |
25 26
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( 𝑛 ∈ 𝐶 ↦ 𝐺 ) ) |
| 28 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
| 29 |
2 3 5 4 1 24 27 28 7
|
fmptcof2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝐹 ) = ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝐹 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ) |
| 31 |
18 30
|
eqtrd |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ) |
| 32 |
31
|
unieqd |
⊢ ( 𝜑 → ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ) |
| 33 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐴 𝐵 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
| 34 |
|
df-esum |
⊢ Σ* 𝑛 ∈ 𝐶 𝐷 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
| 35 |
32 33 34
|
3eqtr4g |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = Σ* 𝑛 ∈ 𝐶 𝐷 ) |