| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmptcof2.x |
⊢ Ⅎ 𝑥 𝑆 |
| 2 |
|
fmptcof2.y |
⊢ Ⅎ 𝑦 𝑇 |
| 3 |
|
fmptcof2.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 4 |
|
fmptcof2.2 |
⊢ Ⅎ 𝑥 𝐵 |
| 5 |
|
fmptcof2.3 |
⊢ Ⅎ 𝑥 𝜑 |
| 6 |
|
fmptcof2.4 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 ) |
| 7 |
|
fmptcof2.5 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) |
| 8 |
|
fmptcof2.6 |
⊢ ( 𝜑 → 𝐺 = ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ) |
| 9 |
|
fmptcof2.7 |
⊢ ( 𝑦 = 𝑅 → 𝑆 = 𝑇 ) |
| 10 |
|
relco |
⊢ Rel ( 𝐺 ∘ 𝐹 ) |
| 11 |
|
mptrel |
⊢ Rel ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) |
| 12 |
6
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ 𝐵 ) |
| 13 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) |
| 14 |
5 3 4 12 13
|
fmptdF |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ 𝐵 ) |
| 15 |
7
|
feq1d |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ 𝐵 ) ) |
| 16 |
14 15
|
mpbird |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 17 |
16
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 18 |
|
funbrfv |
⊢ ( Fun 𝐹 → ( 𝑧 𝐹 𝑢 → ( 𝐹 ‘ 𝑧 ) = 𝑢 ) ) |
| 19 |
18
|
imp |
⊢ ( ( Fun 𝐹 ∧ 𝑧 𝐹 𝑢 ) → ( 𝐹 ‘ 𝑧 ) = 𝑢 ) |
| 20 |
17 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 𝐹 𝑢 ) → ( 𝐹 ‘ 𝑧 ) = 𝑢 ) |
| 21 |
20
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑧 𝐹 𝑢 ) → 𝑢 = ( 𝐹 ‘ 𝑧 ) ) |
| 22 |
21
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑧 𝐹 𝑢 ) → ( 𝑢 𝐺 𝑤 → 𝑢 = ( 𝐹 ‘ 𝑧 ) ) ) |
| 23 |
22
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑧 𝐹 𝑢 ∧ 𝑢 𝐺 𝑤 ) → 𝑢 = ( 𝐹 ‘ 𝑧 ) ) ) |
| 24 |
23
|
pm4.71rd |
⊢ ( 𝜑 → ( ( 𝑧 𝐹 𝑢 ∧ 𝑢 𝐺 𝑤 ) ↔ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) ∧ ( 𝑧 𝐹 𝑢 ∧ 𝑢 𝐺 𝑤 ) ) ) ) |
| 25 |
24
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑢 ( 𝑧 𝐹 𝑢 ∧ 𝑢 𝐺 𝑤 ) ↔ ∃ 𝑢 ( 𝑢 = ( 𝐹 ‘ 𝑧 ) ∧ ( 𝑧 𝐹 𝑢 ∧ 𝑢 𝐺 𝑤 ) ) ) ) |
| 26 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑧 ) ∈ V |
| 27 |
|
breq2 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( 𝑧 𝐹 𝑢 ↔ 𝑧 𝐹 ( 𝐹 ‘ 𝑧 ) ) ) |
| 28 |
|
breq1 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( 𝑢 𝐺 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) 𝐺 𝑤 ) ) |
| 29 |
27 28
|
anbi12d |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑧 𝐹 𝑢 ∧ 𝑢 𝐺 𝑤 ) ↔ ( 𝑧 𝐹 ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) 𝐺 𝑤 ) ) ) |
| 30 |
26 29
|
ceqsexv |
⊢ ( ∃ 𝑢 ( 𝑢 = ( 𝐹 ‘ 𝑧 ) ∧ ( 𝑧 𝐹 𝑢 ∧ 𝑢 𝐺 𝑤 ) ) ↔ ( 𝑧 𝐹 ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) 𝐺 𝑤 ) ) |
| 31 |
|
funfvbrb |
⊢ ( Fun 𝐹 → ( 𝑧 ∈ dom 𝐹 ↔ 𝑧 𝐹 ( 𝐹 ‘ 𝑧 ) ) ) |
| 32 |
17 31
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ dom 𝐹 ↔ 𝑧 𝐹 ( 𝐹 ‘ 𝑧 ) ) ) |
| 33 |
16
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 34 |
33
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝐴 ) ) |
| 35 |
32 34
|
bitr3d |
⊢ ( 𝜑 → ( 𝑧 𝐹 ( 𝐹 ‘ 𝑧 ) ↔ 𝑧 ∈ 𝐴 ) ) |
| 36 |
7
|
fveq1d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ) |
| 37 |
|
eqidd |
⊢ ( 𝜑 → 𝑤 = 𝑤 ) |
| 38 |
36 8 37
|
breq123d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑧 ) 𝐺 𝑤 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ) ) |
| 39 |
35 38
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑧 𝐹 ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) 𝐺 𝑤 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ) ) ) |
| 40 |
3
|
nfcri |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
| 41 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) |
| 42 |
4 1
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) |
| 43 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
| 44 |
41 42 43
|
nfbr |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 |
| 45 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝑇 |
| 46 |
45
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 |
| 47 |
44 46
|
nfbi |
⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) |
| 48 |
5 47
|
nfim |
⊢ Ⅎ 𝑥 ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) |
| 49 |
40 48
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 → ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) ) |
| 50 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ) |
| 52 |
51
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑥 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ) ) |
| 53 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝑇 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) |
| 54 |
53
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑤 = 𝑇 ↔ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) |
| 55 |
52 54
|
bibi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑥 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = 𝑇 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) ) |
| 56 |
55
|
imbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑥 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = 𝑇 ) ) ↔ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) ) ) |
| 57 |
50 56
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑥 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = 𝑇 ) ) ) ↔ ( 𝑧 ∈ 𝐴 → ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) ) ) ) |
| 58 |
|
vex |
⊢ 𝑤 ∈ V |
| 59 |
|
nfv |
⊢ Ⅎ 𝑦 𝑅 ∈ 𝐵 |
| 60 |
2
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑤 = 𝑇 |
| 61 |
59 60
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇 ) |
| 62 |
|
simpl |
⊢ ( ( 𝑦 = 𝑅 ∧ 𝑢 = 𝑤 ) → 𝑦 = 𝑅 ) |
| 63 |
62
|
eleq1d |
⊢ ( ( 𝑦 = 𝑅 ∧ 𝑢 = 𝑤 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑅 ∈ 𝐵 ) ) |
| 64 |
|
simpr |
⊢ ( ( 𝑦 = 𝑅 ∧ 𝑢 = 𝑤 ) → 𝑢 = 𝑤 ) |
| 65 |
9
|
adantr |
⊢ ( ( 𝑦 = 𝑅 ∧ 𝑢 = 𝑤 ) → 𝑆 = 𝑇 ) |
| 66 |
64 65
|
eqeq12d |
⊢ ( ( 𝑦 = 𝑅 ∧ 𝑢 = 𝑤 ) → ( 𝑢 = 𝑆 ↔ 𝑤 = 𝑇 ) ) |
| 67 |
63 66
|
anbi12d |
⊢ ( ( 𝑦 = 𝑅 ∧ 𝑢 = 𝑤 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑢 = 𝑆 ) ↔ ( 𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇 ) ) ) |
| 68 |
|
df-mpt |
⊢ ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) = { 〈 𝑦 , 𝑢 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑢 = 𝑆 ) } |
| 69 |
61 67 68
|
brabgaf |
⊢ ( ( 𝑅 ∈ 𝐵 ∧ 𝑤 ∈ V ) → ( 𝑅 ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ ( 𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇 ) ) ) |
| 70 |
12 58 69
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ ( 𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇 ) ) ) |
| 71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 72 |
3
|
fvmpt2f |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑅 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑥 ) = 𝑅 ) |
| 73 |
71 12 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑥 ) = 𝑅 ) |
| 74 |
73
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑥 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑅 ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ) ) |
| 75 |
12
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑤 = 𝑇 ↔ ( 𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇 ) ) ) |
| 76 |
70 74 75
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑥 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = 𝑇 ) ) |
| 77 |
76
|
expcom |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑥 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = 𝑇 ) ) ) |
| 78 |
49 57 77
|
chvarfv |
⊢ ( 𝑧 ∈ 𝐴 → ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) ) |
| 79 |
78
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ↔ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) |
| 80 |
79
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑧 ) ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) 𝑤 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) ) |
| 81 |
39 80
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑧 𝐹 ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) 𝐺 𝑤 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) ) |
| 82 |
30 81
|
bitrid |
⊢ ( 𝜑 → ( ∃ 𝑢 ( 𝑢 = ( 𝐹 ‘ 𝑧 ) ∧ ( 𝑧 𝐹 𝑢 ∧ 𝑢 𝐺 𝑤 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) ) |
| 83 |
25 82
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑢 ( 𝑧 𝐹 𝑢 ∧ 𝑢 𝐺 𝑤 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) ) |
| 84 |
|
vex |
⊢ 𝑧 ∈ V |
| 85 |
84 58
|
opelco |
⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝐺 ∘ 𝐹 ) ↔ ∃ 𝑢 ( 𝑧 𝐹 𝑢 ∧ 𝑢 𝐺 𝑤 ) ) |
| 86 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) = { 〈 𝑥 , 𝑣 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇 ) } |
| 87 |
86
|
eleq2i |
⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ↔ 〈 𝑧 , 𝑤 〉 ∈ { 〈 𝑥 , 𝑣 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇 ) } ) |
| 88 |
45
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 |
| 89 |
40 88
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) |
| 90 |
|
nfv |
⊢ Ⅎ 𝑣 ( 𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) |
| 91 |
53
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑣 = 𝑇 ↔ 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) |
| 92 |
50 91
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) ) |
| 93 |
|
eqeq1 |
⊢ ( 𝑣 = 𝑤 → ( 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ↔ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) |
| 94 |
93
|
anbi2d |
⊢ ( 𝑣 = 𝑤 → ( ( 𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) ) |
| 95 |
89 90 84 58 92 94
|
opelopabf |
⊢ ( 〈 𝑧 , 𝑤 〉 ∈ { 〈 𝑥 , 𝑣 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇 ) } ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) |
| 96 |
87 95
|
bitri |
⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑇 ) ) |
| 97 |
83 85 96
|
3bitr4g |
⊢ ( 𝜑 → ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝐺 ∘ 𝐹 ) ↔ 〈 𝑧 , 𝑤 〉 ∈ ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) ) |
| 98 |
10 11 97
|
eqrelrdv |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |