Step |
Hyp |
Ref |
Expression |
1 |
|
brabgaf.0 |
⊢ Ⅎ 𝑥 𝜓 |
2 |
|
brabgaf.1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
brabgaf.2 |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } |
4 |
|
df-br |
⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) |
5 |
3
|
eleq2i |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) |
6 |
4 5
|
bitri |
⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) |
7 |
|
elopab |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) |
8 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |
9 |
|
elisset |
⊢ ( 𝐵 ∈ 𝑊 → ∃ 𝑦 𝑦 = 𝐵 ) |
10 |
|
exdistrv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
11 |
|
nfe1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) |
12 |
11 1
|
nfbi |
⊢ Ⅎ 𝑥 ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) |
13 |
|
nfe1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) |
14 |
13
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) |
15 |
|
nfv |
⊢ Ⅎ 𝑦 𝜓 |
16 |
14 15
|
nfbi |
⊢ Ⅎ 𝑦 ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) |
17 |
|
opeq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ) |
18 |
|
copsexgw |
⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) ) |
19 |
18
|
eqcoms |
⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 → ( 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) ) |
20 |
17 19
|
syl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) ) |
21 |
20 2
|
bitr3d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) |
22 |
16 21
|
exlimi |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) |
23 |
12 22
|
exlimi |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) |
24 |
10 23
|
sylbir |
⊢ ( ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) |
25 |
8 9 24
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) |
26 |
7 25
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜓 ) ) |
27 |
6 26
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 𝑅 𝐵 ↔ 𝜓 ) ) |