| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fcomptf.1 |
⊢ Ⅎ 𝑥 𝐵 |
| 2 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐷 |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐸 |
| 5 |
2 3 4
|
nff |
⊢ Ⅎ 𝑥 𝐴 : 𝐷 ⟶ 𝐸 |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
| 7 |
1 6 3
|
nff |
⊢ Ⅎ 𝑥 𝐵 : 𝐶 ⟶ 𝐷 |
| 8 |
5 7
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) |
| 9 |
|
ffvelcdm |
⊢ ( ( 𝐵 : 𝐶 ⟶ 𝐷 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐵 ‘ 𝑥 ) ∈ 𝐷 ) |
| 10 |
9
|
adantll |
⊢ ( ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐵 ‘ 𝑥 ) ∈ 𝐷 ) |
| 11 |
10
|
ex |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → ( 𝑥 ∈ 𝐶 → ( 𝐵 ‘ 𝑥 ) ∈ 𝐷 ) ) |
| 12 |
8 11
|
ralrimi |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → ∀ 𝑥 ∈ 𝐶 ( 𝐵 ‘ 𝑥 ) ∈ 𝐷 ) |
| 13 |
|
ffn |
⊢ ( 𝐵 : 𝐶 ⟶ 𝐷 → 𝐵 Fn 𝐶 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → 𝐵 Fn 𝐶 ) |
| 15 |
1
|
dffn5f |
⊢ ( 𝐵 Fn 𝐶 ↔ 𝐵 = ( 𝑥 ∈ 𝐶 ↦ ( 𝐵 ‘ 𝑥 ) ) ) |
| 16 |
14 15
|
sylib |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → 𝐵 = ( 𝑥 ∈ 𝐶 ↦ ( 𝐵 ‘ 𝑥 ) ) ) |
| 17 |
|
ffn |
⊢ ( 𝐴 : 𝐷 ⟶ 𝐸 → 𝐴 Fn 𝐷 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → 𝐴 Fn 𝐷 ) |
| 19 |
|
dffn5 |
⊢ ( 𝐴 Fn 𝐷 ↔ 𝐴 = ( 𝑦 ∈ 𝐷 ↦ ( 𝐴 ‘ 𝑦 ) ) ) |
| 20 |
18 19
|
sylib |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → 𝐴 = ( 𝑦 ∈ 𝐷 ↦ ( 𝐴 ‘ 𝑦 ) ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑥 ) → ( 𝐴 ‘ 𝑦 ) = ( 𝐴 ‘ ( 𝐵 ‘ 𝑥 ) ) ) |
| 22 |
12 16 20 21
|
fmptcof |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝐸 ∧ 𝐵 : 𝐶 ⟶ 𝐷 ) → ( 𝐴 ∘ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐴 ‘ ( 𝐵 ‘ 𝑥 ) ) ) ) |