Metamath Proof Explorer


Theorem fcomptf

Description: Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt . (Contributed by Thierry Arnoux, 30-Jun-2017)

Ref Expression
Hypothesis fcomptf.1 _xB
Assertion fcomptf A:DEB:CDAB=xCABx

Proof

Step Hyp Ref Expression
1 fcomptf.1 _xB
2 nfcv _xA
3 nfcv _xD
4 nfcv _xE
5 2 3 4 nff xA:DE
6 nfcv _xC
7 1 6 3 nff xB:CD
8 5 7 nfan xA:DEB:CD
9 ffvelcdm B:CDxCBxD
10 9 adantll A:DEB:CDxCBxD
11 10 ex A:DEB:CDxCBxD
12 8 11 ralrimi A:DEB:CDxCBxD
13 ffn B:CDBFnC
14 13 adantl A:DEB:CDBFnC
15 1 dffn5f BFnCB=xCBx
16 14 15 sylib A:DEB:CDB=xCBx
17 ffn A:DEAFnD
18 17 adantr A:DEB:CDAFnD
19 dffn5 AFnDA=yDAy
20 18 19 sylib A:DEB:CDA=yDAy
21 fveq2 y=BxAy=ABx
22 12 16 20 21 fmptcof A:DEB:CDAB=xCABx