Step |
Hyp |
Ref |
Expression |
1 |
|
acunirnmpt.0 |
|
2 |
|
acunirnmpt.1 |
|
3 |
|
acunirnmpt.2 |
|
4 |
|
simpr |
|
5 |
|
simplll |
|
6 |
|
simplr |
|
7 |
5 6 2
|
syl2anc |
|
8 |
4 7
|
eqnetrd |
|
9 |
3
|
eleq2i |
|
10 |
|
vex |
|
11 |
|
eqid |
|
12 |
11
|
elrnmpt |
|
13 |
10 12
|
ax-mp |
|
14 |
9 13
|
bitri |
|
15 |
14
|
biimpi |
|
16 |
15
|
adantl |
|
17 |
8 16
|
r19.29a |
|
18 |
17
|
ralrimiva |
|
19 |
|
mptexg |
|
20 |
|
rnexg |
|
21 |
1 19 20
|
3syl |
|
22 |
3 21
|
eqeltrid |
|
23 |
|
raleq |
|
24 |
|
id |
|
25 |
|
unieq |
|
26 |
24 25
|
feq23d |
|
27 |
|
raleq |
|
28 |
26 27
|
anbi12d |
|
29 |
28
|
exbidv |
|
30 |
23 29
|
imbi12d |
|
31 |
|
vex |
|
32 |
31
|
ac5b |
|
33 |
30 32
|
vtoclg |
|
34 |
22 33
|
syl |
|
35 |
18 34
|
mpd |
|
36 |
16
|
adantr |
|
37 |
|
simpllr |
|
38 |
|
simpr |
|
39 |
37 38
|
eleqtrd |
|
40 |
39
|
ex |
|
41 |
40
|
reximdva |
|
42 |
36 41
|
mpd |
|
43 |
42
|
ex |
|
44 |
43
|
ralimdva |
|
45 |
44
|
anim2d |
|
46 |
45
|
eximdv |
|
47 |
35 46
|
mpd |
|