Metamath Proof Explorer


Theorem acunirnmpt2

Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019)

Ref Expression
Hypotheses acunirnmpt.0 φ A V
acunirnmpt.1 φ j A B
acunirnmpt2.2 C = ran j A B
acunirnmpt2.3 j = f x B = D
Assertion acunirnmpt2 φ f f : C A x C x D

Proof

Step Hyp Ref Expression
1 acunirnmpt.0 φ A V
2 acunirnmpt.1 φ j A B
3 acunirnmpt2.2 C = ran j A B
4 acunirnmpt2.3 j = f x B = D
5 simplr φ x C y ran j A B x y y ran j A B
6 vex y V
7 eqid j A B = j A B
8 7 elrnmpt y V y ran j A B j A y = B
9 6 8 ax-mp y ran j A B j A y = B
10 5 9 sylib φ x C y ran j A B x y j A y = B
11 nfv j φ x C
12 nfcv _ j y
13 nfmpt1 _ j j A B
14 13 nfrn _ j ran j A B
15 12 14 nfel j y ran j A B
16 11 15 nfan j φ x C y ran j A B
17 nfv j x y
18 16 17 nfan j φ x C y ran j A B x y
19 simpllr φ x C y ran j A B x y j A y = B x y
20 simpr φ x C y ran j A B x y j A y = B y = B
21 19 20 eleqtrd φ x C y ran j A B x y j A y = B x B
22 21 ex φ x C y ran j A B x y j A y = B x B
23 22 ex φ x C y ran j A B x y j A y = B x B
24 18 23 reximdai φ x C y ran j A B x y j A y = B j A x B
25 10 24 mpd φ x C y ran j A B x y j A x B
26 3 eleq2i x C x ran j A B
27 26 biimpi x C x ran j A B
28 eluni2 x ran j A B y ran j A B x y
29 27 28 sylib x C y ran j A B x y
30 29 adantl φ x C y ran j A B x y
31 25 30 r19.29a φ x C j A x B
32 31 ralrimiva φ x C j A x B
33 mptexg A V j A B V
34 rnexg j A B V ran j A B V
35 uniexg ran j A B V ran j A B V
36 1 33 34 35 4syl φ ran j A B V
37 3 36 eqeltrid φ C V
38 id c = C c = C
39 38 raleqdv c = C x c j A x B x C j A x B
40 38 feq2d c = C f : c A f : C A
41 38 raleqdv c = C x c x D x C x D
42 40 41 anbi12d c = C f : c A x c x D f : C A x C x D
43 42 exbidv c = C f f : c A x c x D f f : C A x C x D
44 39 43 imbi12d c = C x c j A x B f f : c A x c x D x C j A x B f f : C A x C x D
45 vex c V
46 4 eleq2d j = f x x B x D
47 45 46 ac6s x c j A x B f f : c A x c x D
48 44 47 vtoclg C V x C j A x B f f : C A x C x D
49 37 48 syl φ x C j A x B f f : C A x C x D
50 32 49 mpd φ f f : C A x C x D