Step |
Hyp |
Ref |
Expression |
1 |
|
acunirnmpt.0 |
|
2 |
|
acunirnmpt.1 |
|
3 |
|
acunirnmpt2.2 |
|
4 |
|
acunirnmpt2.3 |
|
5 |
|
simplr |
|
6 |
|
vex |
|
7 |
|
eqid |
|
8 |
7
|
elrnmpt |
|
9 |
6 8
|
ax-mp |
|
10 |
5 9
|
sylib |
|
11 |
|
nfv |
|
12 |
|
nfcv |
|
13 |
|
nfmpt1 |
|
14 |
13
|
nfrn |
|
15 |
12 14
|
nfel |
|
16 |
11 15
|
nfan |
|
17 |
|
nfv |
|
18 |
16 17
|
nfan |
|
19 |
|
simpllr |
|
20 |
|
simpr |
|
21 |
19 20
|
eleqtrd |
|
22 |
21
|
ex |
|
23 |
22
|
ex |
|
24 |
18 23
|
reximdai |
|
25 |
10 24
|
mpd |
|
26 |
3
|
eleq2i |
|
27 |
26
|
biimpi |
|
28 |
|
eluni2 |
|
29 |
27 28
|
sylib |
|
30 |
29
|
adantl |
|
31 |
25 30
|
r19.29a |
|
32 |
31
|
ralrimiva |
|
33 |
|
mptexg |
|
34 |
|
rnexg |
|
35 |
|
uniexg |
|
36 |
1 33 34 35
|
4syl |
|
37 |
3 36
|
eqeltrid |
|
38 |
|
id |
|
39 |
38
|
raleqdv |
|
40 |
38
|
feq2d |
|
41 |
38
|
raleqdv |
|
42 |
40 41
|
anbi12d |
|
43 |
42
|
exbidv |
|
44 |
39 43
|
imbi12d |
|
45 |
|
vex |
|
46 |
4
|
eleq2d |
|
47 |
45 46
|
ac6s |
|
48 |
44 47
|
vtoclg |
|
49 |
37 48
|
syl |
|
50 |
32 49
|
mpd |
|