| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acunirnmpt.0 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
acunirnmpt.1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ≠ ∅ ) |
| 3 |
|
acunirnmpt2.2 |
⊢ 𝐶 = ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) |
| 4 |
|
acunirnmpt2.3 |
⊢ ( 𝑗 = ( 𝑓 ‘ 𝑥 ) → 𝐵 = 𝐷 ) |
| 5 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
| 6 |
|
vex |
⊢ 𝑦 ∈ V |
| 7 |
|
eqid |
⊢ ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) |
| 8 |
7
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑗 ∈ 𝐴 𝑦 = 𝐵 ) ) |
| 9 |
6 8
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑗 ∈ 𝐴 𝑦 = 𝐵 ) |
| 10 |
5 9
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑗 ∈ 𝐴 𝑦 = 𝐵 ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑦 |
| 13 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) |
| 14 |
13
|
nfrn |
⊢ Ⅎ 𝑗 ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) |
| 15 |
12 14
|
nfel |
⊢ Ⅎ 𝑗 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) |
| 16 |
11 15
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 ∈ 𝑦 |
| 18 |
16 17
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) |
| 19 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝑦 ) |
| 20 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 21 |
19 20
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 22 |
21
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑗 ∈ 𝐴 ) → ( 𝑦 = 𝐵 → 𝑥 ∈ 𝐵 ) ) |
| 23 |
22
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑗 ∈ 𝐴 → ( 𝑦 = 𝐵 → 𝑥 ∈ 𝐵 ) ) ) |
| 24 |
18 23
|
reximdai |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ∃ 𝑗 ∈ 𝐴 𝑦 = 𝐵 → ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) ) |
| 25 |
10 24
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 26 |
3
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
| 27 |
26
|
biimpi |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
| 28 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) 𝑥 ∈ 𝑦 ) |
| 29 |
27 28
|
sylib |
⊢ ( 𝑥 ∈ 𝐶 → ∃ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) 𝑥 ∈ 𝑦 ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) 𝑥 ∈ 𝑦 ) |
| 31 |
25 30
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 33 |
|
mptexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 34 |
|
rnexg |
⊢ ( ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V → ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 35 |
|
uniexg |
⊢ ( ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V → ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 36 |
1 33 34 35
|
4syl |
⊢ ( 𝜑 → ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 37 |
3 36
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 38 |
|
id |
⊢ ( 𝑐 = 𝐶 → 𝑐 = 𝐶 ) |
| 39 |
38
|
raleqdv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑥 ∈ 𝑐 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐶 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) ) |
| 40 |
38
|
feq2d |
⊢ ( 𝑐 = 𝐶 → ( 𝑓 : 𝑐 ⟶ 𝐴 ↔ 𝑓 : 𝐶 ⟶ 𝐴 ) ) |
| 41 |
38
|
raleqdv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑥 ∈ 𝑐 𝑥 ∈ 𝐷 ↔ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) |
| 42 |
40 41
|
anbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑓 : 𝑐 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝑐 𝑥 ∈ 𝐷 ) ↔ ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) ) |
| 43 |
42
|
exbidv |
⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑓 ( 𝑓 : 𝑐 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝑐 𝑥 ∈ 𝐷 ) ↔ ∃ 𝑓 ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) ) |
| 44 |
39 43
|
imbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( ∀ 𝑥 ∈ 𝑐 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃ 𝑓 ( 𝑓 : 𝑐 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝑐 𝑥 ∈ 𝐷 ) ) ↔ ( ∀ 𝑥 ∈ 𝐶 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃ 𝑓 ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) ) ) |
| 45 |
|
vex |
⊢ 𝑐 ∈ V |
| 46 |
4
|
eleq2d |
⊢ ( 𝑗 = ( 𝑓 ‘ 𝑥 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐷 ) ) |
| 47 |
45 46
|
ac6s |
⊢ ( ∀ 𝑥 ∈ 𝑐 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃ 𝑓 ( 𝑓 : 𝑐 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝑐 𝑥 ∈ 𝐷 ) ) |
| 48 |
44 47
|
vtoclg |
⊢ ( 𝐶 ∈ V → ( ∀ 𝑥 ∈ 𝐶 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃ 𝑓 ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) ) |
| 49 |
37 48
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐶 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃ 𝑓 ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) ) |
| 50 |
32 49
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) |