| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acunirnmpt.0 |
|
| 2 |
|
acunirnmpt.1 |
|
| 3 |
|
aciunf1lem.a |
|
| 4 |
|
acunirnmpt2f.c |
|
| 5 |
|
acunirnmpt2f.d |
|
| 6 |
|
acunirnmpt2f.2 |
|
| 7 |
|
acunirnmpt2f.3 |
|
| 8 |
|
acunirnmpt2f.4 |
|
| 9 |
|
simplr |
|
| 10 |
|
vex |
|
| 11 |
|
eqid |
|
| 12 |
11
|
elrnmpt |
|
| 13 |
10 12
|
ax-mp |
|
| 14 |
9 13
|
sylib |
|
| 15 |
|
nfv |
|
| 16 |
4
|
nfcri |
|
| 17 |
15 16
|
nfan |
|
| 18 |
|
nfcv |
|
| 19 |
|
nfmpt1 |
|
| 20 |
19
|
nfrn |
|
| 21 |
18 20
|
nfel |
|
| 22 |
17 21
|
nfan |
|
| 23 |
|
nfv |
|
| 24 |
22 23
|
nfan |
|
| 25 |
|
simpllr |
|
| 26 |
|
simpr |
|
| 27 |
25 26
|
eleqtrd |
|
| 28 |
27
|
ex |
|
| 29 |
28
|
ex |
|
| 30 |
24 29
|
reximdai |
|
| 31 |
14 30
|
mpd |
|
| 32 |
8
|
ralrimiva |
|
| 33 |
|
dfiun3g |
|
| 34 |
32 33
|
syl |
|
| 35 |
6 34
|
eqtrid |
|
| 36 |
35
|
eleq2d |
|
| 37 |
36
|
biimpa |
|
| 38 |
|
eluni2 |
|
| 39 |
37 38
|
sylib |
|
| 40 |
31 39
|
r19.29a |
|
| 41 |
40
|
ralrimiva |
|
| 42 |
|
nfcv |
|
| 43 |
|
nfcv |
|
| 44 |
|
nfcsb1v |
|
| 45 |
|
csbeq1a |
|
| 46 |
3 42 43 44 45
|
cbvmptf |
|
| 47 |
|
mptexg |
|
| 48 |
46 47
|
eqeltrid |
|
| 49 |
|
rnexg |
|
| 50 |
|
uniexg |
|
| 51 |
1 48 49 50
|
4syl |
|
| 52 |
35 51
|
eqeltrd |
|
| 53 |
|
id |
|
| 54 |
53
|
raleqdv |
|
| 55 |
53
|
feq2d |
|
| 56 |
53
|
raleqdv |
|
| 57 |
55 56
|
anbi12d |
|
| 58 |
57
|
exbidv |
|
| 59 |
54 58
|
imbi12d |
|
| 60 |
5
|
nfcri |
|
| 61 |
|
vex |
|
| 62 |
7
|
eleq2d |
|
| 63 |
3 60 61 62
|
ac6sf2 |
|
| 64 |
59 63
|
vtoclg |
|
| 65 |
52 64
|
syl |
|
| 66 |
41 65
|
mpd |
|