Metamath Proof Explorer


Theorem ac6sf2

Description: Alternate version of ac6 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008) (Revised by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses ac6sf2.y _yB
ac6sf2.1 yψ
ac6sf2.2 AV
ac6sf2.3 y=fxφψ
Assertion ac6sf2 xAyBφff:ABxAψ

Proof

Step Hyp Ref Expression
1 ac6sf2.y _yB
2 ac6sf2.1 yψ
3 ac6sf2.2 AV
4 ac6sf2.3 y=fxφψ
5 nfcv _zB
6 nfv zφ
7 nfs1v yzyφ
8 sbequ12 y=zφzyφ
9 1 5 6 7 8 cbvrexfw yBφzBzyφ
10 9 ralbii xAyBφxAzBzyφ
11 2 4 sbhypf z=fxzyφψ
12 3 11 ac6s xAzBzyφff:ABxAψ
13 10 12 sylbi xAyBφff:ABxAψ