Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Introduce the Axiom of Choice
ac5b
Next ⟩
ac6num
Metamath Proof Explorer
Ascii
Unicode
Theorem
ac5b
Description:
Equivalent of Axiom of Choice.
(Contributed by
NM
, 31-Aug-1999)
Ref
Expression
Hypothesis
ac5b.1
⊢
A
∈
V
Assertion
ac5b
⊢
∀
x
∈
A
x
≠
∅
→
∃
f
f
:
A
⟶
⋃
A
∧
∀
x
∈
A
f
⁡
x
∈
x
Proof
Step
Hyp
Ref
Expression
1
ac5b.1
⊢
A
∈
V
2
1
uniex
⊢
⋃
A
∈
V
3
numth3
⊢
⋃
A
∈
V
→
⋃
A
∈
dom
⁡
card
4
2
3
mp1i
⊢
∀
x
∈
A
x
≠
∅
→
⋃
A
∈
dom
⁡
card
5
neirr
⊢
¬
∅
≠
∅
6
neeq1
⊢
x
=
∅
→
x
≠
∅
↔
∅
≠
∅
7
6
rspccv
⊢
∀
x
∈
A
x
≠
∅
→
∅
∈
A
→
∅
≠
∅
8
5
7
mtoi
⊢
∀
x
∈
A
x
≠
∅
→
¬
∅
∈
A
9
ac5num
⊢
⋃
A
∈
dom
⁡
card
∧
¬
∅
∈
A
→
∃
f
f
:
A
⟶
⋃
A
∧
∀
x
∈
A
f
⁡
x
∈
x
10
4
8
9
syl2anc
⊢
∀
x
∈
A
x
≠
∅
→
∃
f
f
:
A
⟶
⋃
A
∧
∀
x
∈
A
f
⁡
x
∈
x