Metamath Proof Explorer


Theorem ac5b

Description: Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999)

Ref Expression
Hypothesis ac5b.1 A V
Assertion ac5b x A x f f : A A x A f x x

Proof

Step Hyp Ref Expression
1 ac5b.1 A V
2 1 uniex A V
3 numth3 A V A dom card
4 2 3 mp1i x A x A dom card
5 neirr ¬
6 neeq1 x = x
7 6 rspccv x A x A
8 5 7 mtoi x A x ¬ A
9 ac5num A dom card ¬ A f f : A A x A f x x
10 4 8 9 syl2anc x A x f f : A A x A f x x