| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tsmsf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
tsmsf1o.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 3 |
|
tsmsf1o.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 4 |
|
tsmsf1o.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
tsmsf1o.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 6 |
|
tsmsf1o.s |
⊢ ( 𝜑 → 𝐻 : 𝐶 –1-1-onto→ 𝐴 ) |
| 7 |
|
f1opwfi |
⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) ) |
| 9 |
|
f1of |
⊢ ( ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) → ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) ⟶ ( 𝒫 𝐴 ∩ Fin ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) ⟶ ( 𝒫 𝐴 ∩ Fin ) ) |
| 11 |
|
eqid |
⊢ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) = ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) |
| 12 |
11
|
fmpt |
⊢ ( ∀ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑎 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) ⟶ ( 𝒫 𝐴 ∩ Fin ) ) |
| 13 |
10 12
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑎 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 14 |
|
sseq1 |
⊢ ( 𝑦 = ( 𝐻 “ 𝑎 ) → ( 𝑦 ⊆ 𝑧 ↔ ( 𝐻 “ 𝑎 ) ⊆ 𝑧 ) ) |
| 15 |
14
|
imbi1d |
⊢ ( 𝑦 = ( 𝐻 “ 𝑎 ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 16 |
15
|
ralbidv |
⊢ ( 𝑦 = ( 𝐻 “ 𝑎 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 17 |
11 16
|
rexrnmptw |
⊢ ( ∀ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑎 ) ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ∃ 𝑦 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 18 |
13 17
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 19 |
|
f1ofo |
⊢ ( ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –1-1-onto→ ( 𝒫 𝐴 ∩ Fin ) → ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –onto→ ( 𝒫 𝐴 ∩ Fin ) ) |
| 20 |
|
forn |
⊢ ( ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) –onto→ ( 𝒫 𝐴 ∩ Fin ) → ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) = ( 𝒫 𝐴 ∩ Fin ) ) |
| 21 |
8 19 20
|
3syl |
⊢ ( 𝜑 → ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) = ( 𝒫 𝐴 ∩ Fin ) ) |
| 22 |
21
|
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 23 |
|
imaeq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐻 “ 𝑎 ) = ( 𝐻 “ 𝑏 ) ) |
| 24 |
23
|
cbvmptv |
⊢ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) = ( 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑏 ) ) |
| 25 |
24
|
fmpt |
⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) : ( 𝒫 𝐶 ∩ Fin ) ⟶ ( 𝒫 𝐴 ∩ Fin ) ) |
| 26 |
10 25
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 27 |
|
sseq2 |
⊢ ( 𝑧 = ( 𝐻 “ 𝑏 ) → ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 ↔ ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) ) ) |
| 28 |
|
reseq2 |
⊢ ( 𝑧 = ( 𝐻 “ 𝑏 ) → ( 𝐹 ↾ 𝑧 ) = ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝑧 = ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑧 = ( 𝐻 “ 𝑏 ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ) |
| 31 |
27 30
|
imbi12d |
⊢ ( 𝑧 = ( 𝐻 “ 𝑏 ) → ( ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ) ) |
| 32 |
24 31
|
ralrnmptw |
⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐻 “ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ∀ 𝑧 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ) ) |
| 33 |
26 32
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ) ) |
| 34 |
21
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ ( 𝐻 “ 𝑎 ) ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 35 |
33 34
|
bitr3d |
⊢ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 37 |
|
f1of1 |
⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → 𝐻 : 𝐶 –1-1→ 𝐴 ) |
| 38 |
6 37
|
syl |
⊢ ( 𝜑 → 𝐻 : 𝐶 –1-1→ 𝐴 ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐻 : 𝐶 –1-1→ 𝐴 ) |
| 40 |
|
elfpw |
⊢ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( 𝑎 ⊆ 𝐶 ∧ 𝑎 ∈ Fin ) ) |
| 41 |
40
|
simplbi |
⊢ ( 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑎 ⊆ 𝐶 ) |
| 42 |
41
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑎 ⊆ 𝐶 ) |
| 43 |
|
elfpw |
⊢ ( 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( 𝑏 ⊆ 𝐶 ∧ 𝑏 ∈ Fin ) ) |
| 44 |
43
|
simplbi |
⊢ ( 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑏 ⊆ 𝐶 ) |
| 45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑏 ⊆ 𝐶 ) |
| 46 |
|
f1imass |
⊢ ( ( 𝐻 : 𝐶 –1-1→ 𝐴 ∧ ( 𝑎 ⊆ 𝐶 ∧ 𝑏 ⊆ 𝐶 ) ) → ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) ↔ 𝑎 ⊆ 𝑏 ) ) |
| 47 |
39 42 45 46
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) ↔ 𝑎 ⊆ 𝑏 ) ) |
| 48 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 49 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
| 50 |
|
elinel2 |
⊢ ( 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑏 ∈ Fin ) |
| 51 |
50
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑏 ∈ Fin ) |
| 52 |
|
f1ores |
⊢ ( ( 𝐻 : 𝐶 –1-1→ 𝐴 ∧ 𝑏 ⊆ 𝐶 ) → ( 𝐻 ↾ 𝑏 ) : 𝑏 –1-1-onto→ ( 𝐻 “ 𝑏 ) ) |
| 53 |
39 45 52
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐻 ↾ 𝑏 ) : 𝑏 –1-1-onto→ ( 𝐻 “ 𝑏 ) ) |
| 54 |
|
f1ofo |
⊢ ( ( 𝐻 ↾ 𝑏 ) : 𝑏 –1-1-onto→ ( 𝐻 “ 𝑏 ) → ( 𝐻 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐻 “ 𝑏 ) ) |
| 55 |
53 54
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐻 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐻 “ 𝑏 ) ) |
| 56 |
|
fofi |
⊢ ( ( 𝑏 ∈ Fin ∧ ( 𝐻 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐻 “ 𝑏 ) ) → ( 𝐻 “ 𝑏 ) ∈ Fin ) |
| 57 |
51 55 56
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐻 “ 𝑏 ) ∈ Fin ) |
| 58 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 59 |
|
imassrn |
⊢ ( 𝐻 “ 𝑏 ) ⊆ ran 𝐻 |
| 60 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐻 : 𝐶 –1-1-onto→ 𝐴 ) |
| 61 |
|
f1ofo |
⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → 𝐻 : 𝐶 –onto→ 𝐴 ) |
| 62 |
|
forn |
⊢ ( 𝐻 : 𝐶 –onto→ 𝐴 → ran 𝐻 = 𝐴 ) |
| 63 |
60 61 62
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝐻 = 𝐴 ) |
| 64 |
59 63
|
sseqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐻 “ 𝑏 ) ⊆ 𝐴 ) |
| 65 |
58 64
|
fssresd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) : ( 𝐻 “ 𝑏 ) ⟶ 𝐵 ) |
| 66 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 0g ‘ 𝐺 ) ∈ V ) |
| 67 |
65 57 66
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) finSupp ( 0g ‘ 𝐺 ) ) |
| 68 |
1 48 49 57 65 67 53
|
gsumf1o |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) = ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ∘ ( 𝐻 ↾ 𝑏 ) ) ) ) |
| 69 |
|
df-ima |
⊢ ( 𝐻 “ 𝑏 ) = ran ( 𝐻 ↾ 𝑏 ) |
| 70 |
69
|
eqimss2i |
⊢ ran ( 𝐻 ↾ 𝑏 ) ⊆ ( 𝐻 “ 𝑏 ) |
| 71 |
|
cores |
⊢ ( ran ( 𝐻 ↾ 𝑏 ) ⊆ ( 𝐻 “ 𝑏 ) → ( ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ∘ ( 𝐻 ↾ 𝑏 ) ) = ( 𝐹 ∘ ( 𝐻 ↾ 𝑏 ) ) ) |
| 72 |
70 71
|
ax-mp |
⊢ ( ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ∘ ( 𝐻 ↾ 𝑏 ) ) = ( 𝐹 ∘ ( 𝐻 ↾ 𝑏 ) ) |
| 73 |
|
resco |
⊢ ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) = ( 𝐹 ∘ ( 𝐻 ↾ 𝑏 ) ) |
| 74 |
72 73
|
eqtr4i |
⊢ ( ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ∘ ( 𝐻 ↾ 𝑏 ) ) = ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) |
| 75 |
74
|
oveq2i |
⊢ ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ∘ ( 𝐻 ↾ 𝑏 ) ) ) = ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) |
| 76 |
68 75
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) = ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ) |
| 77 |
76
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) |
| 78 |
47 77
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ↔ ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 79 |
78
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ ( 𝐻 “ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐻 “ 𝑏 ) ) ) ∈ 𝑢 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 80 |
36 79
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 81 |
80
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐻 “ 𝑎 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 82 |
18 22 81
|
3bitr3d |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
| 83 |
82
|
imbi2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ↔ ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ) |
| 84 |
83
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ↔ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ) |
| 85 |
84
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ) ) |
| 86 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
| 87 |
|
eqid |
⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) |
| 88 |
1 86 87 2 3 4 5
|
eltsms |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) ) |
| 89 |
|
eqid |
⊢ ( 𝒫 𝐶 ∩ Fin ) = ( 𝒫 𝐶 ∩ Fin ) |
| 90 |
|
f1dmex |
⊢ ( ( 𝐻 : 𝐶 –1-1→ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐶 ∈ V ) |
| 91 |
38 4 90
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 92 |
|
f1of |
⊢ ( 𝐻 : 𝐶 –1-1-onto→ 𝐴 → 𝐻 : 𝐶 ⟶ 𝐴 ) |
| 93 |
6 92
|
syl |
⊢ ( 𝜑 → 𝐻 : 𝐶 ⟶ 𝐴 ) |
| 94 |
|
fco |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐻 : 𝐶 ⟶ 𝐴 ) → ( 𝐹 ∘ 𝐻 ) : 𝐶 ⟶ 𝐵 ) |
| 95 |
5 93 94
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) : 𝐶 ⟶ 𝐵 ) |
| 96 |
1 86 89 2 3 91 95
|
eltsms |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums ( 𝐹 ∘ 𝐻 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ) ) |
| 97 |
85 88 96
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝑥 ∈ ( 𝐺 tsums ( 𝐹 ∘ 𝐻 ) ) ) ) |
| 98 |
97
|
eqrdv |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( 𝐺 tsums ( 𝐹 ∘ 𝐻 ) ) ) |