Metamath Proof Explorer


Theorem esumf1o

Description: Re-index an extended sum using a bijection. (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Hypotheses esumf1o.0 n φ
esumf1o.b _ n B
esumf1o.d _ k D
esumf1o.a _ n A
esumf1o.c _ n C
esumf1o.f _ n F
esumf1o.1 k = G B = D
esumf1o.2 φ A V
esumf1o.3 φ F : C 1-1 onto A
esumf1o.4 φ n C F n = G
esumf1o.5 φ k A B 0 +∞
Assertion esumf1o φ * k A B = * n C D

Proof

Step Hyp Ref Expression
1 esumf1o.0 n φ
2 esumf1o.b _ n B
3 esumf1o.d _ k D
4 esumf1o.a _ n A
5 esumf1o.c _ n C
6 esumf1o.f _ n F
7 esumf1o.1 k = G B = D
8 esumf1o.2 φ A V
9 esumf1o.3 φ F : C 1-1 onto A
10 esumf1o.4 φ n C F n = G
11 esumf1o.5 φ k A B 0 +∞
12 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
13 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
14 13 a1i φ 𝑠 * 𝑠 0 +∞ CMnd
15 xrge0tps 𝑠 * 𝑠 0 +∞ TopSp
16 15 a1i φ 𝑠 * 𝑠 0 +∞ TopSp
17 11 fmpttd φ k A B : A 0 +∞
18 12 14 16 8 17 9 tsmsf1o φ 𝑠 * 𝑠 0 +∞ tsums k A B = 𝑠 * 𝑠 0 +∞ tsums k A B F
19 f1of F : C 1-1 onto A F : C A
20 9 19 syl φ F : C A
21 20 ffvelrnda φ n C F n A
22 10 21 eqeltrrd φ n C G A
23 22 ex φ n C G A
24 1 23 ralrimi φ n C G A
25 5 6 20 feqmptdf φ F = n C F n
26 1 10 mpteq2da φ n C F n = n C G
27 25 26 eqtrd φ F = n C G
28 eqidd φ k A B = k A B
29 2 3 5 4 1 24 27 28 7 fmptcof2 φ k A B F = n C D
30 29 oveq2d φ 𝑠 * 𝑠 0 +∞ tsums k A B F = 𝑠 * 𝑠 0 +∞ tsums n C D
31 18 30 eqtrd φ 𝑠 * 𝑠 0 +∞ tsums k A B = 𝑠 * 𝑠 0 +∞ tsums n C D
32 31 unieqd φ 𝑠 * 𝑠 0 +∞ tsums k A B = 𝑠 * 𝑠 0 +∞ tsums n C D
33 df-esum * k A B = 𝑠 * 𝑠 0 +∞ tsums k A B
34 df-esum * n C D = 𝑠 * 𝑠 0 +∞ tsums n C D
35 32 33 34 3eqtr4g φ * k A B = * n C D