Metamath Proof Explorer


Theorem esumeq1d

Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017)

Ref Expression
Hypotheses esumeq1d.0 kφ
esumeq1d.1 φA=B
Assertion esumeq1d φ*kAC=*kBC

Proof

Step Hyp Ref Expression
1 esumeq1d.0 kφ
2 esumeq1d.1 φA=B
3 eqidd φkAC=C
4 1 2 3 esumeq12dvaf φ*kAC=*kBC