Metamath Proof Explorer
Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017)
|
|
Ref |
Expression |
|
Hypotheses |
esumeq1d.0 |
|
|
|
esumeq1d.1 |
|
|
Assertion |
esumeq1d |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumeq1d.0 |
|
| 2 |
|
esumeq1d.1 |
|
| 3 |
|
eqidd |
|
| 4 |
1 2 3
|
esumeq12dvaf |
|