Metamath Proof Explorer


Theorem esumeq1d

Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017)

Ref Expression
Hypotheses esumeq1d.0 k φ
esumeq1d.1 φ A = B
Assertion esumeq1d φ * k A C = * k B C

Proof

Step Hyp Ref Expression
1 esumeq1d.0 k φ
2 esumeq1d.1 φ A = B
3 eqidd φ k A C = C
4 1 2 3 esumeq12dvaf φ * k A C = * k B C