Metamath Proof Explorer


Theorem esumeq1d

Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017)

Ref Expression
Hypotheses esumeq1d.0 𝑘 𝜑
esumeq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion esumeq1d ( 𝜑 → Σ* 𝑘𝐴 𝐶 = Σ* 𝑘𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 esumeq1d.0 𝑘 𝜑
2 esumeq1d.1 ( 𝜑𝐴 = 𝐵 )
3 eqidd ( ( 𝜑𝑘𝐴 ) → 𝐶 = 𝐶 )
4 1 2 3 esumeq12dvaf ( 𝜑 → Σ* 𝑘𝐴 𝐶 = Σ* 𝑘𝐵 𝐶 )