Metamath Proof Explorer
Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017)
|
|
Ref |
Expression |
|
Hypotheses |
esumeq1d.0 |
⊢ Ⅎ 𝑘 𝜑 |
|
|
esumeq1d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
Assertion |
esumeq1d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 = Σ* 𝑘 ∈ 𝐵 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
esumeq1d.0 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
esumeq1d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
3 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 = 𝐶 ) |
4 |
1 2 3
|
esumeq12dvaf |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 = Σ* 𝑘 ∈ 𝐵 𝐶 ) |