Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ 𝐴 = 𝐴 |
2 |
|
mpteq12 |
⊢ ( ( 𝐴 = 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
3 |
1 2
|
mpan |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
4 |
3
|
oveq2d |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) |
5 |
4
|
unieqd |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 → ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) |
6 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐴 𝐵 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
7 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐴 𝐶 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
8 |
5 6 7
|
3eqtr4g |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ* 𝑘 ∈ 𝐴 𝐵 = Σ* 𝑘 ∈ 𝐴 𝐶 ) |