Metamath Proof Explorer


Theorem esumeq2

Description: Equality theorem for extended sum. (Contributed by Thierry Arnoux, 24-Dec-2016)

Ref Expression
Assertion esumeq2 ( ∀ 𝑘𝐴 𝐵 = 𝐶 → Σ* 𝑘𝐴 𝐵 = Σ* 𝑘𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 mpteq12 ( ( 𝐴 = 𝐴 ∧ ∀ 𝑘𝐴 𝐵 = 𝐶 ) → ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐶 ) )
3 1 2 mpan ( ∀ 𝑘𝐴 𝐵 = 𝐶 → ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐶 ) )
4 3 oveq2d ( ∀ 𝑘𝐴 𝐵 = 𝐶 → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐶 ) ) )
5 4 unieqd ( ∀ 𝑘𝐴 𝐵 = 𝐶 ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐶 ) ) )
6 df-esum Σ* 𝑘𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) )
7 df-esum Σ* 𝑘𝐴 𝐶 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐶 ) )
8 5 6 7 3eqtr4g ( ∀ 𝑘𝐴 𝐵 = 𝐶 → Σ* 𝑘𝐴 𝐵 = Σ* 𝑘𝐴 𝐶 )