Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and complex functions
Extended sum
esumeq2
Next ⟩
esumeq2d
Metamath Proof Explorer
Ascii
Unicode
Theorem
esumeq2
Description:
Equality theorem for extended sum.
(Contributed by
Thierry Arnoux
, 24-Dec-2016)
Ref
Expression
Assertion
esumeq2
⊢
∀
k
∈
A
B
=
C
→
∑
*
k
∈
A
B
=
∑
*
k
∈
A
C
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
A
=
A
2
mpteq12
⊢
A
=
A
∧
∀
k
∈
A
B
=
C
→
k
∈
A
⟼
B
=
k
∈
A
⟼
C
3
1
2
mpan
⊢
∀
k
∈
A
B
=
C
→
k
∈
A
⟼
B
=
k
∈
A
⟼
C
4
3
oveq2d
⊢
∀
k
∈
A
B
=
C
→
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
B
=
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
5
4
unieqd
⊢
∀
k
∈
A
B
=
C
→
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
B
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
6
df-esum
⊢
∑
*
k
∈
A
B
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
B
7
df-esum
⊢
∑
*
k
∈
A
C
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
8
5
6
7
3eqtr4g
⊢
∀
k
∈
A
B
=
C
→
∑
*
k
∈
A
B
=
∑
*
k
∈
A
C