| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- A = A |
| 2 |
|
mpteq12 |
|- ( ( A = A /\ A. k e. A B = C ) -> ( k e. A |-> B ) = ( k e. A |-> C ) ) |
| 3 |
1 2
|
mpan |
|- ( A. k e. A B = C -> ( k e. A |-> B ) = ( k e. A |-> C ) ) |
| 4 |
3
|
oveq2d |
|- ( A. k e. A B = C -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) ) |
| 5 |
4
|
unieqd |
|- ( A. k e. A B = C -> U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) ) |
| 6 |
|
df-esum |
|- sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
| 7 |
|
df-esum |
|- sum* k e. A C = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) |
| 8 |
5 6 7
|
3eqtr4g |
|- ( A. k e. A B = C -> sum* k e. A B = sum* k e. A C ) |