Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | esumeq1d.0 | |- F/ k ph |
|
| esumeq1d.1 | |- ( ph -> A = B ) |
||
| Assertion | esumeq1d | |- ( ph -> sum* k e. A C = sum* k e. B C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumeq1d.0 | |- F/ k ph |
|
| 2 | esumeq1d.1 | |- ( ph -> A = B ) |
|
| 3 | eqidd | |- ( ( ph /\ k e. A ) -> C = C ) |
|
| 4 | 1 2 3 | esumeq12dvaf | |- ( ph -> sum* k e. A C = sum* k e. B C ) |