Metamath Proof Explorer


Theorem esumeq1d

Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017)

Ref Expression
Hypotheses esumeq1d.0
|- F/ k ph
esumeq1d.1
|- ( ph -> A = B )
Assertion esumeq1d
|- ( ph -> sum* k e. A C = sum* k e. B C )

Proof

Step Hyp Ref Expression
1 esumeq1d.0
 |-  F/ k ph
2 esumeq1d.1
 |-  ( ph -> A = B )
3 eqidd
 |-  ( ( ph /\ k e. A ) -> C = C )
4 1 2 3 esumeq12dvaf
 |-  ( ph -> sum* k e. A C = sum* k e. B C )