| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esummono.f |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
esummono.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 3 |
|
esummono.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 4 |
|
esummono.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
| 5 |
2
|
difexd |
⊢ ( 𝜑 → ( 𝐶 ∖ 𝐴 ) ∈ V ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) ) → 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) ) |
| 7 |
6
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) ) → 𝑘 ∈ 𝐶 ) |
| 8 |
7 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 9 |
8
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
| 10 |
1 9
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐶 ∖ 𝐴 ) |
| 12 |
11
|
esumcl |
⊢ ( ( ( 𝐶 ∖ 𝐴 ) ∈ V ∧ ∀ 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 13 |
5 10 12
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 14 |
|
elxrge0 |
⊢ ( Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ∈ ℝ* ∧ 0 ≤ Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ) ) |
| 15 |
14
|
simprbi |
⊢ ( Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ∈ ( 0 [,] +∞ ) → 0 ≤ Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ) |
| 16 |
13 15
|
syl |
⊢ ( 𝜑 → 0 ≤ Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ) |
| 17 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 18 |
2 4
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 19 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐶 ) |
| 20 |
19 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 21 |
20
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
| 22 |
1 21
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 23 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 24 |
23
|
esumcl |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 25 |
18 22 24
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 26 |
17 25
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* ) |
| 27 |
17 13
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ∈ ℝ* ) |
| 28 |
|
xraddge02 |
⊢ ( ( Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* ∧ Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ∈ ℝ* ) → ( 0 ≤ Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 → Σ* 𝑘 ∈ 𝐴 𝐵 ≤ ( Σ* 𝑘 ∈ 𝐴 𝐵 +𝑒 Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ) ) ) |
| 29 |
26 27 28
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 → Σ* 𝑘 ∈ 𝐴 𝐵 ≤ ( Σ* 𝑘 ∈ 𝐴 𝐵 +𝑒 Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ) ) ) |
| 30 |
16 29
|
mpd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ≤ ( Σ* 𝑘 ∈ 𝐴 𝐵 +𝑒 Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ) ) |
| 31 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝐶 ∖ 𝐴 ) ) = ∅ |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐶 ∖ 𝐴 ) ) = ∅ ) |
| 33 |
1 23 11 18 5 32 20 8
|
esumsplit |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) 𝐵 = ( Σ* 𝑘 ∈ 𝐴 𝐵 +𝑒 Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ) ) |
| 34 |
|
undif |
⊢ ( 𝐴 ⊆ 𝐶 ↔ ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) = 𝐶 ) |
| 35 |
4 34
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) = 𝐶 ) |
| 36 |
1 35
|
esumeq1d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) 𝐵 = Σ* 𝑘 ∈ 𝐶 𝐵 ) |
| 37 |
33 36
|
eqtr3d |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐵 +𝑒 Σ* 𝑘 ∈ ( 𝐶 ∖ 𝐴 ) 𝐵 ) = Σ* 𝑘 ∈ 𝐶 𝐵 ) |
| 38 |
30 37
|
breqtrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ≤ Σ* 𝑘 ∈ 𝐶 𝐵 ) |