| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumpad.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
esumpad.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 3 |
|
esumpad.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 4 |
|
esumpad.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 = 0 ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐵 ∖ 𝐴 ) |
| 8 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 9 |
1 8
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 10 |
2
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ∈ V ) |
| 11 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) |
| 13 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 ) |
| 14 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑘 ∈ 𝐵 ) |
| 15 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 16 |
4 15
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 17 |
14 16
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 18 |
5 6 7 9 10 12 3 17
|
esumsplit |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) 𝐶 = ( Σ* 𝑘 ∈ 𝐴 𝐶 +𝑒 Σ* 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 ) ) |
| 19 |
|
undif2 |
⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) |
| 20 |
|
esumeq1 |
⊢ ( ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) → Σ* 𝑘 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ) |
| 21 |
19 20
|
ax-mp |
⊢ Σ* 𝑘 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ) |
| 23 |
14 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) |
| 24 |
23
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = 0 ) |
| 25 |
5 24
|
esumeq2d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 0 ) |
| 26 |
7
|
esum0 |
⊢ ( ( 𝐵 ∖ 𝐴 ) ∈ V → Σ* 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 0 = 0 ) |
| 27 |
10 26
|
syl |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 0 = 0 ) |
| 28 |
25 27
|
eqtrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = 0 ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐶 +𝑒 Σ* 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 ) = ( Σ* 𝑘 ∈ 𝐴 𝐶 +𝑒 0 ) ) |
| 30 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 31 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 32 |
6
|
esumcl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐴 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 33 |
1 31 32
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 34 |
30 33
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 ∈ ℝ* ) |
| 35 |
|
xaddrid |
⊢ ( Σ* 𝑘 ∈ 𝐴 𝐶 ∈ ℝ* → ( Σ* 𝑘 ∈ 𝐴 𝐶 +𝑒 0 ) = Σ* 𝑘 ∈ 𝐴 𝐶 ) |
| 36 |
34 35
|
syl |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐶 +𝑒 0 ) = Σ* 𝑘 ∈ 𝐴 𝐶 ) |
| 37 |
29 36
|
eqtrd |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐶 +𝑒 Σ* 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 ) = Σ* 𝑘 ∈ 𝐴 𝐶 ) |
| 38 |
18 22 37
|
3eqtr3d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ 𝐴 𝐶 ) |