Metamath Proof Explorer


Theorem esumpad

Description: Extend an extended sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 31-May-2020)

Ref Expression
Hypotheses esumpad.1 ( 𝜑𝐴𝑉 )
esumpad.2 ( 𝜑𝐵𝑊 )
esumpad.3 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
esumpad.4 ( ( 𝜑𝑘𝐵 ) → 𝐶 = 0 )
Assertion esumpad ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 esumpad.1 ( 𝜑𝐴𝑉 )
2 esumpad.2 ( 𝜑𝐵𝑊 )
3 esumpad.3 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
4 esumpad.4 ( ( 𝜑𝑘𝐵 ) → 𝐶 = 0 )
5 nfv 𝑘 𝜑
6 nfcv 𝑘 𝐴
7 nfcv 𝑘 ( 𝐵𝐴 )
8 elex ( 𝐴𝑉𝐴 ∈ V )
9 1 8 syl ( 𝜑𝐴 ∈ V )
10 2 difexd ( 𝜑 → ( 𝐵𝐴 ) ∈ V )
11 disjdif ( 𝐴 ∩ ( 𝐵𝐴 ) ) = ∅
12 11 a1i ( 𝜑 → ( 𝐴 ∩ ( 𝐵𝐴 ) ) = ∅ )
13 difssd ( 𝜑 → ( 𝐵𝐴 ) ⊆ 𝐵 )
14 13 sselda ( ( 𝜑𝑘 ∈ ( 𝐵𝐴 ) ) → 𝑘𝐵 )
15 0e0iccpnf 0 ∈ ( 0 [,] +∞ )
16 4 15 eqeltrdi ( ( 𝜑𝑘𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
17 14 16 syldan ( ( 𝜑𝑘 ∈ ( 𝐵𝐴 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
18 5 6 7 9 10 12 3 17 esumsplit ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∪ ( 𝐵𝐴 ) ) 𝐶 = ( Σ* 𝑘𝐴 𝐶 +𝑒 Σ* 𝑘 ∈ ( 𝐵𝐴 ) 𝐶 ) )
19 undif2 ( 𝐴 ∪ ( 𝐵𝐴 ) ) = ( 𝐴𝐵 )
20 esumeq1 ( ( 𝐴 ∪ ( 𝐵𝐴 ) ) = ( 𝐴𝐵 ) → Σ* 𝑘 ∈ ( 𝐴 ∪ ( 𝐵𝐴 ) ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
21 19 20 ax-mp Σ* 𝑘 ∈ ( 𝐴 ∪ ( 𝐵𝐴 ) ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶
22 21 a1i ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∪ ( 𝐵𝐴 ) ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
23 14 4 syldan ( ( 𝜑𝑘 ∈ ( 𝐵𝐴 ) ) → 𝐶 = 0 )
24 23 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝐵𝐴 ) 𝐶 = 0 )
25 5 24 esumeq2d ( 𝜑 → Σ* 𝑘 ∈ ( 𝐵𝐴 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐵𝐴 ) 0 )
26 7 esum0 ( ( 𝐵𝐴 ) ∈ V → Σ* 𝑘 ∈ ( 𝐵𝐴 ) 0 = 0 )
27 10 26 syl ( 𝜑 → Σ* 𝑘 ∈ ( 𝐵𝐴 ) 0 = 0 )
28 25 27 eqtrd ( 𝜑 → Σ* 𝑘 ∈ ( 𝐵𝐴 ) 𝐶 = 0 )
29 28 oveq2d ( 𝜑 → ( Σ* 𝑘𝐴 𝐶 +𝑒 Σ* 𝑘 ∈ ( 𝐵𝐴 ) 𝐶 ) = ( Σ* 𝑘𝐴 𝐶 +𝑒 0 ) )
30 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
31 3 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) )
32 6 esumcl ( ( 𝐴𝑉 ∧ ∀ 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) )
33 1 31 32 syl2anc ( 𝜑 → Σ* 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) )
34 30 33 sselid ( 𝜑 → Σ* 𝑘𝐴 𝐶 ∈ ℝ* )
35 xaddid1 ( Σ* 𝑘𝐴 𝐶 ∈ ℝ* → ( Σ* 𝑘𝐴 𝐶 +𝑒 0 ) = Σ* 𝑘𝐴 𝐶 )
36 34 35 syl ( 𝜑 → ( Σ* 𝑘𝐴 𝐶 +𝑒 0 ) = Σ* 𝑘𝐴 𝐶 )
37 29 36 eqtrd ( 𝜑 → ( Σ* 𝑘𝐴 𝐶 +𝑒 Σ* 𝑘 ∈ ( 𝐵𝐴 ) 𝐶 ) = Σ* 𝑘𝐴 𝐶 )
38 18 22 37 3eqtr3d ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘𝐴 𝐶 )