Metamath Proof Explorer


Theorem esumpad2

Description: Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020)

Ref Expression
Hypotheses esumpad.1 ( 𝜑𝐴𝑉 )
esumpad.2 ( 𝜑𝐵𝑊 )
esumpad.3 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
esumpad.4 ( ( 𝜑𝑘𝐵 ) → 𝐶 = 0 )
Assertion esumpad2 ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 esumpad.1 ( 𝜑𝐴𝑉 )
2 esumpad.2 ( 𝜑𝐵𝑊 )
3 esumpad.3 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
4 esumpad.4 ( ( 𝜑𝑘𝐵 ) → 𝐶 = 0 )
5 nfv 𝑘 𝜑
6 difssd ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐴 )
7 5 1 3 6 esummono ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ≤ Σ* 𝑘𝐴 𝐶 )
8 unexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )
9 1 2 8 syl2anc ( 𝜑 → ( 𝐴𝐵 ) ∈ V )
10 elun ( 𝑘 ∈ ( 𝐴𝐵 ) ↔ ( 𝑘𝐴𝑘𝐵 ) )
11 0e0iccpnf 0 ∈ ( 0 [,] +∞ )
12 4 11 eqeltrdi ( ( 𝜑𝑘𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
13 3 12 jaodan ( ( 𝜑 ∧ ( 𝑘𝐴𝑘𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
14 10 13 sylan2b ( ( 𝜑𝑘 ∈ ( 𝐴𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
15 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
16 15 a1i ( 𝜑𝐴 ⊆ ( 𝐴𝐵 ) )
17 5 9 14 16 esummono ( 𝜑 → Σ* 𝑘𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
18 undif1 ( ( 𝐴𝐵 ) ∪ 𝐵 ) = ( 𝐴𝐵 )
19 esumeq1 ( ( ( 𝐴𝐵 ) ∪ 𝐵 ) = ( 𝐴𝐵 ) → Σ* 𝑘 ∈ ( ( 𝐴𝐵 ) ∪ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
20 18 19 ax-mp Σ* 𝑘 ∈ ( ( 𝐴𝐵 ) ∪ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶
21 1 difexd ( 𝜑 → ( 𝐴𝐵 ) ∈ V )
22 6 sselda ( ( 𝜑𝑘 ∈ ( 𝐴𝐵 ) ) → 𝑘𝐴 )
23 22 3 syldan ( ( 𝜑𝑘 ∈ ( 𝐴𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
24 21 2 23 4 esumpad ( 𝜑 → Σ* 𝑘 ∈ ( ( 𝐴𝐵 ) ∪ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
25 20 24 eqtr3id ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
26 17 25 breqtrd ( 𝜑 → Σ* 𝑘𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
27 7 26 jca ( 𝜑 → ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ≤ Σ* 𝑘𝐴 𝐶 ∧ Σ* 𝑘𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ) )
28 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
29 23 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) )
30 nfcv 𝑘 ( 𝐴𝐵 )
31 30 esumcl ( ( ( 𝐴𝐵 ) ∈ V ∧ ∀ 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) )
32 21 29 31 syl2anc ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) )
33 28 32 sselid ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ℝ* )
34 3 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) )
35 nfcv 𝑘 𝐴
36 35 esumcl ( ( 𝐴𝑉 ∧ ∀ 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) )
37 1 34 36 syl2anc ( 𝜑 → Σ* 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) )
38 28 37 sselid ( 𝜑 → Σ* 𝑘𝐴 𝐶 ∈ ℝ* )
39 xrletri3 ( ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ℝ* ∧ Σ* 𝑘𝐴 𝐶 ∈ ℝ* ) → ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘𝐴 𝐶 ↔ ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ≤ Σ* 𝑘𝐴 𝐶 ∧ Σ* 𝑘𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ) ) )
40 33 38 39 syl2anc ( 𝜑 → ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘𝐴 𝐶 ↔ ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ≤ Σ* 𝑘𝐴 𝐶 ∧ Σ* 𝑘𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ) ) )
41 27 40 mpbird ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘𝐴 𝐶 )