Metamath Proof Explorer


Theorem esumpad2

Description: Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020)

Ref Expression
Hypotheses esumpad.1 ( 𝜑𝐴𝑉 )
esumpad.2 ( 𝜑𝐵𝑊 )
esumpad.3 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
esumpad.4 ( ( 𝜑𝑘𝐵 ) → 𝐶 = 0 )
Assertion esumpad2 ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 esumpad.1 ( 𝜑𝐴𝑉 )
2 esumpad.2 ( 𝜑𝐵𝑊 )
3 esumpad.3 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
4 esumpad.4 ( ( 𝜑𝑘𝐵 ) → 𝐶 = 0 )
5 nfv 𝑘 𝜑
6 difssd ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐴 )
7 5 1 3 6 esummono ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ≤ Σ* 𝑘𝐴 𝐶 )
8 unexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )
9 1 2 8 syl2anc ( 𝜑 → ( 𝐴𝐵 ) ∈ V )
10 elun ( 𝑘 ∈ ( 𝐴𝐵 ) ↔ ( 𝑘𝐴𝑘𝐵 ) )
11 0e0iccpnf 0 ∈ ( 0 [,] +∞ )
12 4 11 eqeltrdi ( ( 𝜑𝑘𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
13 3 12 jaodan ( ( 𝜑 ∧ ( 𝑘𝐴𝑘𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
14 10 13 sylan2b ( ( 𝜑𝑘 ∈ ( 𝐴𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
15 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
16 15 a1i ( 𝜑𝐴 ⊆ ( 𝐴𝐵 ) )
17 5 9 14 16 esummono ( 𝜑 → Σ* 𝑘𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
18 undif1 ( ( 𝐴𝐵 ) ∪ 𝐵 ) = ( 𝐴𝐵 )
19 esumeq1 ( ( ( 𝐴𝐵 ) ∪ 𝐵 ) = ( 𝐴𝐵 ) → Σ* 𝑘 ∈ ( ( 𝐴𝐵 ) ∪ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
20 18 19 ax-mp Σ* 𝑘 ∈ ( ( 𝐴𝐵 ) ∪ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶
21 difexg ( 𝐴𝑉 → ( 𝐴𝐵 ) ∈ V )
22 1 21 syl ( 𝜑 → ( 𝐴𝐵 ) ∈ V )
23 6 sselda ( ( 𝜑𝑘 ∈ ( 𝐴𝐵 ) ) → 𝑘𝐴 )
24 23 3 syldan ( ( 𝜑𝑘 ∈ ( 𝐴𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
25 22 2 24 4 esumpad ( 𝜑 → Σ* 𝑘 ∈ ( ( 𝐴𝐵 ) ∪ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
26 20 25 eqtr3id ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
27 17 26 breqtrd ( 𝜑 → Σ* 𝑘𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 )
28 7 27 jca ( 𝜑 → ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ≤ Σ* 𝑘𝐴 𝐶 ∧ Σ* 𝑘𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ) )
29 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
30 24 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) )
31 nfcv 𝑘 ( 𝐴𝐵 )
32 31 esumcl ( ( ( 𝐴𝐵 ) ∈ V ∧ ∀ 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) )
33 22 30 32 syl2anc ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) )
34 29 33 sseldi ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ℝ* )
35 3 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) )
36 nfcv 𝑘 𝐴
37 36 esumcl ( ( 𝐴𝑉 ∧ ∀ 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) )
38 1 35 37 syl2anc ( 𝜑 → Σ* 𝑘𝐴 𝐶 ∈ ( 0 [,] +∞ ) )
39 29 38 sseldi ( 𝜑 → Σ* 𝑘𝐴 𝐶 ∈ ℝ* )
40 xrletri3 ( ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ∈ ℝ* ∧ Σ* 𝑘𝐴 𝐶 ∈ ℝ* ) → ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘𝐴 𝐶 ↔ ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ≤ Σ* 𝑘𝐴 𝐶 ∧ Σ* 𝑘𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ) ) )
41 34 39 40 syl2anc ( 𝜑 → ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘𝐴 𝐶 ↔ ( Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ≤ Σ* 𝑘𝐴 𝐶 ∧ Σ* 𝑘𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 ) ) )
42 28 41 mpbird ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴𝐵 ) 𝐶 = Σ* 𝑘𝐴 𝐶 )