| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumpad.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
esumpad.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 3 |
|
esumpad.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 4 |
|
esumpad.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 = 0 ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 6 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) |
| 7 |
5 1 3 6
|
esummono |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ≤ Σ* 𝑘 ∈ 𝐴 𝐶 ) |
| 8 |
|
unexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 9 |
1 2 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 10 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) |
| 11 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 12 |
4 11
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 13 |
3 12
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 14 |
10 13
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 15 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 17 |
5 9 14 16
|
esummono |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ) |
| 18 |
|
undif1 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |
| 19 |
|
esumeq1 |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) → Σ* 𝑘 ∈ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ) |
| 20 |
18 19
|
ax-mp |
⊢ Σ* 𝑘 ∈ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 |
| 21 |
1
|
difexd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ∈ V ) |
| 22 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝑘 ∈ 𝐴 ) |
| 23 |
22 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 24 |
21 2 23 4
|
esumpad |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) |
| 25 |
20 24
|
eqtr3id |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) |
| 26 |
17 25
|
breqtrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) |
| 27 |
7 26
|
jca |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ≤ Σ* 𝑘 ∈ 𝐴 𝐶 ∧ Σ* 𝑘 ∈ 𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) ) |
| 28 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 29 |
23
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐴 ∖ 𝐵 ) |
| 31 |
30
|
esumcl |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ V ∧ ∀ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 32 |
21 29 31
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 33 |
28 32
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∈ ℝ* ) |
| 34 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 35 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 36 |
35
|
esumcl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐴 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 37 |
1 34 36
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 38 |
28 37
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 ∈ ℝ* ) |
| 39 |
|
xrletri3 |
⊢ ( ( Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∈ ℝ* ∧ Σ* 𝑘 ∈ 𝐴 𝐶 ∈ ℝ* ) → ( Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ 𝐴 𝐶 ↔ ( Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ≤ Σ* 𝑘 ∈ 𝐴 𝐶 ∧ Σ* 𝑘 ∈ 𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) ) ) |
| 40 |
33 38 39
|
syl2anc |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ 𝐴 𝐶 ↔ ( Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ≤ Σ* 𝑘 ∈ 𝐴 𝐶 ∧ Σ* 𝑘 ∈ 𝐴 𝐶 ≤ Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) ) ) |
| 41 |
27 40
|
mpbird |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ 𝐴 𝐶 ) |