Metamath Proof Explorer


Theorem esumpad2

Description: Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020)

Ref Expression
Hypotheses esumpad.1 φAV
esumpad.2 φBW
esumpad.3 φkAC0+∞
esumpad.4 φkBC=0
Assertion esumpad2 φ*kABC=*kAC

Proof

Step Hyp Ref Expression
1 esumpad.1 φAV
2 esumpad.2 φBW
3 esumpad.3 φkAC0+∞
4 esumpad.4 φkBC=0
5 nfv kφ
6 difssd φABA
7 5 1 3 6 esummono φ*kABC*kAC
8 unexg AVBWABV
9 1 2 8 syl2anc φABV
10 elun kABkAkB
11 0e0iccpnf 00+∞
12 4 11 eqeltrdi φkBC0+∞
13 3 12 jaodan φkAkBC0+∞
14 10 13 sylan2b φkABC0+∞
15 ssun1 AAB
16 15 a1i φAAB
17 5 9 14 16 esummono φ*kAC*kABC
18 undif1 ABB=AB
19 esumeq1 ABB=AB*kABBC=*kABC
20 18 19 ax-mp *kABBC=*kABC
21 1 difexd φABV
22 6 sselda φkABkA
23 22 3 syldan φkABC0+∞
24 21 2 23 4 esumpad φ*kABBC=*kABC
25 20 24 eqtr3id φ*kABC=*kABC
26 17 25 breqtrd φ*kAC*kABC
27 7 26 jca φ*kABC*kAC*kAC*kABC
28 iccssxr 0+∞*
29 23 ralrimiva φkABC0+∞
30 nfcv _kAB
31 30 esumcl ABVkABC0+∞*kABC0+∞
32 21 29 31 syl2anc φ*kABC0+∞
33 28 32 sselid φ*kABC*
34 3 ralrimiva φkAC0+∞
35 nfcv _kA
36 35 esumcl AVkAC0+∞*kAC0+∞
37 1 34 36 syl2anc φ*kAC0+∞
38 28 37 sselid φ*kAC*
39 xrletri3 *kABC**kAC**kABC=*kAC*kABC*kAC*kAC*kABC
40 33 38 39 syl2anc φ*kABC=*kAC*kABC*kAC*kAC*kABC
41 27 40 mpbird φ*kABC=*kAC