Metamath Proof Explorer


Theorem esumpad2

Description: Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020)

Ref Expression
Hypotheses esumpad.1 φ A V
esumpad.2 φ B W
esumpad.3 φ k A C 0 +∞
esumpad.4 φ k B C = 0
Assertion esumpad2 φ * k A B C = * k A C

Proof

Step Hyp Ref Expression
1 esumpad.1 φ A V
2 esumpad.2 φ B W
3 esumpad.3 φ k A C 0 +∞
4 esumpad.4 φ k B C = 0
5 nfv k φ
6 difssd φ A B A
7 5 1 3 6 esummono φ * k A B C * k A C
8 unexg A V B W A B V
9 1 2 8 syl2anc φ A B V
10 elun k A B k A k B
11 0e0iccpnf 0 0 +∞
12 4 11 eqeltrdi φ k B C 0 +∞
13 3 12 jaodan φ k A k B C 0 +∞
14 10 13 sylan2b φ k A B C 0 +∞
15 ssun1 A A B
16 15 a1i φ A A B
17 5 9 14 16 esummono φ * k A C * k A B C
18 undif1 A B B = A B
19 esumeq1 A B B = A B * k A B B C = * k A B C
20 18 19 ax-mp * k A B B C = * k A B C
21 1 difexd φ A B V
22 6 sselda φ k A B k A
23 22 3 syldan φ k A B C 0 +∞
24 21 2 23 4 esumpad φ * k A B B C = * k A B C
25 20 24 eqtr3id φ * k A B C = * k A B C
26 17 25 breqtrd φ * k A C * k A B C
27 7 26 jca φ * k A B C * k A C * k A C * k A B C
28 iccssxr 0 +∞ *
29 23 ralrimiva φ k A B C 0 +∞
30 nfcv _ k A B
31 30 esumcl A B V k A B C 0 +∞ * k A B C 0 +∞
32 21 29 31 syl2anc φ * k A B C 0 +∞
33 28 32 sselid φ * k A B C *
34 3 ralrimiva φ k A C 0 +∞
35 nfcv _ k A
36 35 esumcl A V k A C 0 +∞ * k A C 0 +∞
37 1 34 36 syl2anc φ * k A C 0 +∞
38 28 37 sselid φ * k A C *
39 xrletri3 * k A B C * * k A C * * k A B C = * k A C * k A B C * k A C * k A C * k A B C
40 33 38 39 syl2anc φ * k A B C = * k A C * k A B C * k A C * k A C * k A B C
41 27 40 mpbird φ * k A B C = * k A C