Metamath Proof Explorer


Theorem esumadd

Description: Addition of infinite sums. (Contributed by Thierry Arnoux, 24-Mar-2017)

Ref Expression
Hypotheses esumadd.0 φAV
esumadd.1 φkAB0+∞
esumadd.2 φkAC0+∞
Assertion esumadd φ*kAB+𝑒C=*kAB+𝑒*kAC

Proof

Step Hyp Ref Expression
1 esumadd.0 φAV
2 esumadd.1 φkAB0+∞
3 esumadd.2 φkAC0+∞
4 nfv kφ
5 nfcv _kA
6 ge0xaddcl B0+∞C0+∞B+𝑒C0+∞
7 2 3 6 syl2anc φkAB+𝑒C0+∞
8 xrge0base 0+∞=Base𝑠*𝑠0+∞
9 xrge0plusg +𝑒=+𝑠*𝑠0+∞
10 xrge0cmn 𝑠*𝑠0+∞CMnd
11 10 a1i φ𝑠*𝑠0+∞CMnd
12 xrge0tmd 𝑠*𝑠0+∞TopMnd
13 12 a1i φ𝑠*𝑠0+∞TopMnd
14 2 fmpttd φkAB:A0+∞
15 3 fmpttd φkAC:A0+∞
16 4 5 1 2 esumel φ*kAB𝑠*𝑠0+∞tsumskAB
17 4 5 1 3 esumel φ*kAC𝑠*𝑠0+∞tsumskAC
18 8 9 11 13 1 14 15 16 17 tsmsadd φ*kAB+𝑒*kAC𝑠*𝑠0+∞tsumskAB+𝑒fkAC
19 eqidd φkAB=kAB
20 eqidd φkAC=kAC
21 1 2 3 19 20 offval2 φkAB+𝑒fkAC=kAB+𝑒C
22 21 oveq2d φ𝑠*𝑠0+∞tsumskAB+𝑒fkAC=𝑠*𝑠0+∞tsumskAB+𝑒C
23 18 22 eleqtrd φ*kAB+𝑒*kAC𝑠*𝑠0+∞tsumskAB+𝑒C
24 4 5 1 7 23 esumid φ*kAB+𝑒C=*kAB+𝑒*kAC