Metamath Proof Explorer


Theorem esumadd

Description: Addition of infinite sums. (Contributed by Thierry Arnoux, 24-Mar-2017)

Ref Expression
Hypotheses esumadd.0 ( 𝜑𝐴𝑉 )
esumadd.1 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
esumadd.2 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
Assertion esumadd ( 𝜑 → Σ* 𝑘𝐴 ( 𝐵 +𝑒 𝐶 ) = ( Σ* 𝑘𝐴 𝐵 +𝑒 Σ* 𝑘𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 esumadd.0 ( 𝜑𝐴𝑉 )
2 esumadd.1 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
3 esumadd.2 ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
4 nfv 𝑘 𝜑
5 nfcv 𝑘 𝐴
6 ge0xaddcl ( ( 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐵 +𝑒 𝐶 ) ∈ ( 0 [,] +∞ ) )
7 2 3 6 syl2anc ( ( 𝜑𝑘𝐴 ) → ( 𝐵 +𝑒 𝐶 ) ∈ ( 0 [,] +∞ ) )
8 xrge0base ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
9 xrge0plusg +𝑒 = ( +g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
10 xrge0cmn ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd
11 10 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd )
12 xrge0tmd ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopMnd
13 12 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopMnd )
14 2 fmpttd ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
15 3 fmpttd ( 𝜑 → ( 𝑘𝐴𝐶 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
16 4 5 1 2 esumel ( 𝜑 → Σ* 𝑘𝐴 𝐵 ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) )
17 4 5 1 3 esumel ( 𝜑 → Σ* 𝑘𝐴 𝐶 ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐶 ) ) )
18 8 9 11 13 1 14 15 16 17 tsmsadd ( 𝜑 → ( Σ* 𝑘𝐴 𝐵 +𝑒 Σ* 𝑘𝐴 𝐶 ) ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( ( 𝑘𝐴𝐵 ) ∘f +𝑒 ( 𝑘𝐴𝐶 ) ) ) )
19 eqidd ( 𝜑 → ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 ) )
20 eqidd ( 𝜑 → ( 𝑘𝐴𝐶 ) = ( 𝑘𝐴𝐶 ) )
21 1 2 3 19 20 offval2 ( 𝜑 → ( ( 𝑘𝐴𝐵 ) ∘f +𝑒 ( 𝑘𝐴𝐶 ) ) = ( 𝑘𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) )
22 21 oveq2d ( 𝜑 → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( ( 𝑘𝐴𝐵 ) ∘f +𝑒 ( 𝑘𝐴𝐶 ) ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) ) )
23 18 22 eleqtrd ( 𝜑 → ( Σ* 𝑘𝐴 𝐵 +𝑒 Σ* 𝑘𝐴 𝐶 ) ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) ) )
24 4 5 1 7 23 esumid ( 𝜑 → Σ* 𝑘𝐴 ( 𝐵 +𝑒 𝐶 ) = ( Σ* 𝑘𝐴 𝐵 +𝑒 Σ* 𝑘𝐴 𝐶 ) )