| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumadd.0 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
esumadd.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 3 |
|
esumadd.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 6 |
|
ge0xaddcl |
⊢ ( ( 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐵 +𝑒 𝐶 ) ∈ ( 0 [,] +∞ ) ) |
| 7 |
2 3 6
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 +𝑒 𝐶 ) ∈ ( 0 [,] +∞ ) ) |
| 8 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 9 |
|
xrge0plusg |
⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 10 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
| 12 |
|
xrge0tmd |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopMnd |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopMnd ) |
| 14 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 15 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 16 |
4 5 1 2
|
esumel |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 17 |
4 5 1 3
|
esumel |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) |
| 18 |
8 9 11 13 1 14 15 16 17
|
tsmsadd |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐵 +𝑒 Σ* 𝑘 ∈ 𝐴 𝐶 ) ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘f +𝑒 ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ) |
| 19 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
| 20 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 21 |
1 2 3 19 20
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘f +𝑒 ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘f +𝑒 ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) ) ) |
| 23 |
18 22
|
eleqtrd |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐵 +𝑒 Σ* 𝑘 ∈ 𝐴 𝐶 ) ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) ) ) |
| 24 |
4 5 1 7 23
|
esumid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 ( 𝐵 +𝑒 𝐶 ) = ( Σ* 𝑘 ∈ 𝐴 𝐵 +𝑒 Σ* 𝑘 ∈ 𝐴 𝐶 ) ) |