| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 0 ↔ 𝑦 = 0 ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( log ‘ 𝑥 ) = ( log ‘ 𝑦 ) ) |
| 3 |
2
|
negeqd |
⊢ ( 𝑥 = 𝑦 → - ( log ‘ 𝑥 ) = - ( log ‘ 𝑦 ) ) |
| 4 |
1 3
|
ifbieq2d |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = if ( 𝑦 = 0 , +∞ , - ( log ‘ 𝑦 ) ) ) |
| 5 |
4
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑦 = 0 , +∞ , - ( log ‘ 𝑦 ) ) ) |
| 6 |
|
xrge0topn |
⊢ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 7 |
5 6
|
xrge0iifmhm |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) MndHom ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 8 |
5 6
|
xrge0iifhmeo |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) ∈ ( II Homeo ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
| 9 |
|
cnfldex |
⊢ ℂfld ∈ V |
| 10 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
| 11 |
|
eqid |
⊢ ( ℂfld ↾s ( 0 [,] 1 ) ) = ( ℂfld ↾s ( 0 [,] 1 ) ) |
| 12 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 13 |
11 12
|
mgpress |
⊢ ( ( ℂfld ∈ V ∧ ( 0 [,] 1 ) ∈ V ) → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,] 1 ) ) ) ) |
| 14 |
9 10 13
|
mp2an |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,] 1 ) ) ) |
| 15 |
11
|
dfii4 |
⊢ II = ( TopOpen ‘ ( ℂfld ↾s ( 0 [,] 1 ) ) ) |
| 16 |
14 15
|
mgptopn |
⊢ II = ( TopOpen ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ) |
| 17 |
16
|
oveq1i |
⊢ ( II Homeo ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) = ( ( TopOpen ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ) Homeo ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
| 18 |
8 17
|
eleqtri |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) ∈ ( ( TopOpen ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ) Homeo ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
| 19 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) |
| 20 |
19
|
iistmd |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ∈ TopMnd |
| 21 |
|
xrge0tps |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp |
| 22 |
7 18 20 21
|
mhmhmeotmd |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopMnd |