| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 2 |
|
cmnmnd |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
| 4 |
|
xrge0tps |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp |
| 5 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = 0 ↔ 𝑥 = 0 ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( log ‘ 𝑦 ) = ( log ‘ 𝑥 ) ) |
| 7 |
6
|
negeqd |
⊢ ( 𝑦 = 𝑥 → - ( log ‘ 𝑦 ) = - ( log ‘ 𝑥 ) ) |
| 8 |
5 7
|
ifbieq2d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 = 0 , +∞ , - ( log ‘ 𝑦 ) ) = if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) |
| 9 |
8
|
cbvmptv |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑦 = 0 , +∞ , - ( log ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) |
| 10 |
|
eqid |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 11 |
|
eqid |
⊢ ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) = ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) |
| 12 |
9 10 11
|
xrge0pluscn |
⊢ ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ∈ ( ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ×t ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) Cn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) |
| 13 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
| 14 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 15 |
|
xrsadd |
⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) |
| 16 |
|
xaddf |
⊢ +𝑒 : ( ℝ* × ℝ* ) ⟶ ℝ* |
| 17 |
|
ffn |
⊢ ( +𝑒 : ( ℝ* × ℝ* ) ⟶ ℝ* → +𝑒 Fn ( ℝ* × ℝ* ) ) |
| 18 |
16 17
|
ax-mp |
⊢ +𝑒 Fn ( ℝ* × ℝ* ) |
| 19 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 20 |
13 14 15 18 19
|
ressplusf |
⊢ ( +𝑓 ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) |
| 21 |
20
|
eqcomi |
⊢ ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) = ( +𝑓 ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 22 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 23 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
| 24 |
|
xrstset |
⊢ ( ordTop ‘ ≤ ) = ( TopSet ‘ ℝ*𝑠 ) |
| 25 |
14 24
|
resstset |
⊢ ( ( 0 [,] +∞ ) ∈ V → ( ordTop ‘ ≤ ) = ( TopSet ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
| 26 |
23 25
|
ax-mp |
⊢ ( ordTop ‘ ≤ ) = ( TopSet ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 27 |
22 26
|
topnval |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 28 |
21 27
|
istmd |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopMnd ↔ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ∧ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp ∧ ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ∈ ( ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ×t ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) Cn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) ) ) |
| 29 |
3 4 12 28
|
mpbir3an |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopMnd |