Metamath Proof Explorer


Theorem xrge0tmdALT

Description: Alternate proof of xrge0tmd . (Contributed by Thierry Arnoux, 26-Mar-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion xrge0tmdALT 𝑠*𝑠0+∞TopMnd

Proof

Step Hyp Ref Expression
1 xrge0cmn 𝑠*𝑠0+∞CMnd
2 cmnmnd 𝑠*𝑠0+∞CMnd𝑠*𝑠0+∞Mnd
3 1 2 ax-mp 𝑠*𝑠0+∞Mnd
4 xrge0tps 𝑠*𝑠0+∞TopSp
5 eqeq1 y=xy=0x=0
6 fveq2 y=xlogy=logx
7 6 negeqd y=xlogy=logx
8 5 7 ifbieq2d y=xify=0+∞logy=ifx=0+∞logx
9 8 cbvmptv y01ify=0+∞logy=x01ifx=0+∞logx
10 eqid ordTop𝑡0+∞=ordTop𝑡0+∞
11 eqid +𝑒0+∞×0+∞=+𝑒0+∞×0+∞
12 9 10 11 xrge0pluscn +𝑒0+∞×0+∞ordTop𝑡0+∞×tordTop𝑡0+∞CnordTop𝑡0+∞
13 xrsbas *=Base𝑠*
14 eqid 𝑠*𝑠0+∞=𝑠*𝑠0+∞
15 xrsadd +𝑒=+𝑠*
16 xaddf +𝑒:*×**
17 ffn +𝑒:*×**+𝑒Fn*×*
18 16 17 ax-mp +𝑒Fn*×*
19 iccssxr 0+∞*
20 13 14 15 18 19 ressplusf +𝑓𝑠*𝑠0+∞=+𝑒0+∞×0+∞
21 20 eqcomi +𝑒0+∞×0+∞=+𝑓𝑠*𝑠0+∞
22 xrge0base 0+∞=Base𝑠*𝑠0+∞
23 ovex 0+∞V
24 xrstset ordTop=TopSet𝑠*
25 14 24 resstset 0+∞VordTop=TopSet𝑠*𝑠0+∞
26 23 25 ax-mp ordTop=TopSet𝑠*𝑠0+∞
27 22 26 topnval ordTop𝑡0+∞=TopOpen𝑠*𝑠0+∞
28 21 27 istmd 𝑠*𝑠0+∞TopMnd𝑠*𝑠0+∞Mnd𝑠*𝑠0+∞TopSp+𝑒0+∞×0+∞ordTop𝑡0+∞×tordTop𝑡0+∞CnordTop𝑡0+∞
29 3 4 12 28 mpbir3an 𝑠*𝑠0+∞TopMnd