Metamath Proof Explorer


Theorem xrge0tmdALT

Description: Alternate proof of xrge0tmd . (Contributed by Thierry Arnoux, 26-Mar-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion xrge0tmdALT 𝑠 * 𝑠 0 +∞ TopMnd

Proof

Step Hyp Ref Expression
1 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
2 cmnmnd 𝑠 * 𝑠 0 +∞ CMnd 𝑠 * 𝑠 0 +∞ Mnd
3 1 2 ax-mp 𝑠 * 𝑠 0 +∞ Mnd
4 xrge0tps 𝑠 * 𝑠 0 +∞ TopSp
5 eqeq1 y = x y = 0 x = 0
6 fveq2 y = x log y = log x
7 6 negeqd y = x log y = log x
8 5 7 ifbieq2d y = x if y = 0 +∞ log y = if x = 0 +∞ log x
9 8 cbvmptv y 0 1 if y = 0 +∞ log y = x 0 1 if x = 0 +∞ log x
10 eqid ordTop 𝑡 0 +∞ = ordTop 𝑡 0 +∞
11 eqid + 𝑒 0 +∞ × 0 +∞ = + 𝑒 0 +∞ × 0 +∞
12 9 10 11 xrge0pluscn + 𝑒 0 +∞ × 0 +∞ ordTop 𝑡 0 +∞ × t ordTop 𝑡 0 +∞ Cn ordTop 𝑡 0 +∞
13 xrsbas * = Base 𝑠 *
14 eqid 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
15 xrsadd + 𝑒 = + 𝑠 *
16 xaddf + 𝑒 : * × * *
17 ffn + 𝑒 : * × * * + 𝑒 Fn * × *
18 16 17 ax-mp + 𝑒 Fn * × *
19 iccssxr 0 +∞ *
20 13 14 15 18 19 ressplusf + 𝑓 𝑠 * 𝑠 0 +∞ = + 𝑒 0 +∞ × 0 +∞
21 20 eqcomi + 𝑒 0 +∞ × 0 +∞ = + 𝑓 𝑠 * 𝑠 0 +∞
22 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
23 ovex 0 +∞ V
24 xrstset ordTop = TopSet 𝑠 *
25 14 24 resstset 0 +∞ V ordTop = TopSet 𝑠 * 𝑠 0 +∞
26 23 25 ax-mp ordTop = TopSet 𝑠 * 𝑠 0 +∞
27 22 26 topnval ordTop 𝑡 0 +∞ = TopOpen 𝑠 * 𝑠 0 +∞
28 21 27 istmd 𝑠 * 𝑠 0 +∞ TopMnd 𝑠 * 𝑠 0 +∞ Mnd 𝑠 * 𝑠 0 +∞ TopSp + 𝑒 0 +∞ × 0 +∞ ordTop 𝑡 0 +∞ × t ordTop 𝑡 0 +∞ Cn ordTop 𝑡 0 +∞
29 3 4 12 28 mpbir3an 𝑠 * 𝑠 0 +∞ TopMnd