Metamath Proof Explorer


Theorem xaddf

Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xaddf +𝑒:*×**

Proof

Step Hyp Ref Expression
1 0xr 0*
2 pnfxr +∞*
3 1 2 ifcli ify=−∞0+∞*
4 3 a1i x*y*x=+∞ify=−∞0+∞*
5 mnfxr −∞*
6 1 5 ifcli ify=+∞0−∞*
7 6 a1i x*y*¬x=+∞x=−∞ify=+∞0−∞*
8 2 a1i x*¬x=+∞¬x=−∞y*y=+∞+∞*
9 5 a1i x*¬x=+∞¬x=−∞y*¬y=+∞y=−∞−∞*
10 ioran ¬x=+∞x=−∞¬x=+∞¬x=−∞
11 elxr x*xx=+∞x=−∞
12 3orass xx=+∞x=−∞xx=+∞x=−∞
13 11 12 sylbb x*xx=+∞x=−∞
14 13 ord x*¬xx=+∞x=−∞
15 14 con1d x*¬x=+∞x=−∞x
16 15 imp x*¬x=+∞x=−∞x
17 10 16 sylan2br x*¬x=+∞¬x=−∞x
18 ioran ¬y=+∞y=−∞¬y=+∞¬y=−∞
19 elxr y*yy=+∞y=−∞
20 3orass yy=+∞y=−∞yy=+∞y=−∞
21 19 20 sylbb y*yy=+∞y=−∞
22 21 ord y*¬yy=+∞y=−∞
23 22 con1d y*¬y=+∞y=−∞y
24 23 imp y*¬y=+∞y=−∞y
25 18 24 sylan2br y*¬y=+∞¬y=−∞y
26 readdcl xyx+y
27 17 25 26 syl2an x*¬x=+∞¬x=−∞y*¬y=+∞¬y=−∞x+y
28 27 rexrd x*¬x=+∞¬x=−∞y*¬y=+∞¬y=−∞x+y*
29 28 anassrs x*¬x=+∞¬x=−∞y*¬y=+∞¬y=−∞x+y*
30 29 anassrs x*¬x=+∞¬x=−∞y*¬y=+∞¬y=−∞x+y*
31 9 30 ifclda x*¬x=+∞¬x=−∞y*¬y=+∞ify=−∞−∞x+y*
32 8 31 ifclda x*¬x=+∞¬x=−∞y*ify=+∞+∞ify=−∞−∞x+y*
33 32 an32s x*y*¬x=+∞¬x=−∞ify=+∞+∞ify=−∞−∞x+y*
34 33 anassrs x*y*¬x=+∞¬x=−∞ify=+∞+∞ify=−∞−∞x+y*
35 7 34 ifclda x*y*¬x=+∞ifx=−∞ify=+∞0−∞ify=+∞+∞ify=−∞−∞x+y*
36 4 35 ifclda x*y*ifx=+∞ify=−∞0+∞ifx=−∞ify=+∞0−∞ify=+∞+∞ify=−∞−∞x+y*
37 36 rgen2 x*y*ifx=+∞ify=−∞0+∞ifx=−∞ify=+∞0−∞ify=+∞+∞ify=−∞−∞x+y*
38 df-xadd +𝑒=x*,y*ifx=+∞ify=−∞0+∞ifx=−∞ify=+∞0−∞ify=+∞+∞ify=−∞−∞x+y
39 38 fmpo x*y*ifx=+∞ify=−∞0+∞ifx=−∞ify=+∞0−∞ify=+∞+∞ify=−∞−∞x+y*+𝑒:*×**
40 37 39 mpbi +𝑒:*×**