Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xaddf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr | |
|
2 | pnfxr | |
|
3 | 1 2 | ifcli | |
4 | 3 | a1i | |
5 | mnfxr | |
|
6 | 1 5 | ifcli | |
7 | 6 | a1i | |
8 | 2 | a1i | |
9 | 5 | a1i | |
10 | ioran | |
|
11 | elxr | |
|
12 | 3orass | |
|
13 | 11 12 | sylbb | |
14 | 13 | ord | |
15 | 14 | con1d | |
16 | 15 | imp | |
17 | 10 16 | sylan2br | |
18 | ioran | |
|
19 | elxr | |
|
20 | 3orass | |
|
21 | 19 20 | sylbb | |
22 | 21 | ord | |
23 | 22 | con1d | |
24 | 23 | imp | |
25 | 18 24 | sylan2br | |
26 | readdcl | |
|
27 | 17 25 26 | syl2an | |
28 | 27 | rexrd | |
29 | 28 | anassrs | |
30 | 29 | anassrs | |
31 | 9 30 | ifclda | |
32 | 8 31 | ifclda | |
33 | 32 | an32s | |
34 | 33 | anassrs | |
35 | 7 34 | ifclda | |
36 | 4 35 | ifclda | |
37 | 36 | rgen2 | |
38 | df-xadd | |
|
39 | 38 | fmpo | |
40 | 37 39 | mpbi | |