Metamath Proof Explorer


Theorem xrge0pluscn

Description: The addition operation of the extended nonnegative real numbers monoid is continuous. (Contributed by Thierry Arnoux, 24-Mar-2017)

Ref Expression
Hypotheses xrge0iifhmeo.1 F = x 0 1 if x = 0 +∞ log x
xrge0iifhmeo.k J = ordTop 𝑡 0 +∞
xrge0pluscn.1 + ˙ = + 𝑒 0 +∞ × 0 +∞
Assertion xrge0pluscn + ˙ J × t J Cn J

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F = x 0 1 if x = 0 +∞ log x
2 xrge0iifhmeo.k J = ordTop 𝑡 0 +∞
3 xrge0pluscn.1 + ˙ = + 𝑒 0 +∞ × 0 +∞
4 1 2 xrge0iifhmeo F II Homeo J
5 unitsscn 0 1
6 xpss12 0 1 0 1 0 1 × 0 1 ×
7 5 5 6 mp2an 0 1 × 0 1 ×
8 ax-mulf × : ×
9 ffn × : × × Fn ×
10 fnssresb × Fn × × 0 1 × 0 1 Fn 0 1 × 0 1 0 1 × 0 1 ×
11 8 9 10 mp2b × 0 1 × 0 1 Fn 0 1 × 0 1 0 1 × 0 1 ×
12 7 11 mpbir × 0 1 × 0 1 Fn 0 1 × 0 1
13 ovres u 0 1 v 0 1 u × 0 1 × 0 1 v = u v
14 iimulcl u 0 1 v 0 1 u v 0 1
15 13 14 eqeltrd u 0 1 v 0 1 u × 0 1 × 0 1 v 0 1
16 15 rgen2 u 0 1 v 0 1 u × 0 1 × 0 1 v 0 1
17 ffnov × 0 1 × 0 1 : 0 1 × 0 1 0 1 × 0 1 × 0 1 Fn 0 1 × 0 1 u 0 1 v 0 1 u × 0 1 × 0 1 v 0 1
18 12 16 17 mpbir2an × 0 1 × 0 1 : 0 1 × 0 1 0 1
19 iccssxr 0 +∞ *
20 xpss12 0 +∞ * 0 +∞ * 0 +∞ × 0 +∞ * × *
21 19 19 20 mp2an 0 +∞ × 0 +∞ * × *
22 xaddf + 𝑒 : * × * *
23 ffn + 𝑒 : * × * * + 𝑒 Fn * × *
24 fnssresb + 𝑒 Fn * × * + 𝑒 0 +∞ × 0 +∞ Fn 0 +∞ × 0 +∞ 0 +∞ × 0 +∞ * × *
25 22 23 24 mp2b + 𝑒 0 +∞ × 0 +∞ Fn 0 +∞ × 0 +∞ 0 +∞ × 0 +∞ * × *
26 21 25 mpbir + 𝑒 0 +∞ × 0 +∞ Fn 0 +∞ × 0 +∞
27 3 fneq1i + ˙ Fn 0 +∞ × 0 +∞ + 𝑒 0 +∞ × 0 +∞ Fn 0 +∞ × 0 +∞
28 26 27 mpbir + ˙ Fn 0 +∞ × 0 +∞
29 3 oveqi a + ˙ b = a + 𝑒 0 +∞ × 0 +∞ b
30 ovres a 0 +∞ b 0 +∞ a + 𝑒 0 +∞ × 0 +∞ b = a + 𝑒 b
31 ge0xaddcl a 0 +∞ b 0 +∞ a + 𝑒 b 0 +∞
32 30 31 eqeltrd a 0 +∞ b 0 +∞ a + 𝑒 0 +∞ × 0 +∞ b 0 +∞
33 29 32 eqeltrid a 0 +∞ b 0 +∞ a + ˙ b 0 +∞
34 33 rgen2 a 0 +∞ b 0 +∞ a + ˙ b 0 +∞
35 ffnov + ˙ : 0 +∞ × 0 +∞ 0 +∞ + ˙ Fn 0 +∞ × 0 +∞ a 0 +∞ b 0 +∞ a + ˙ b 0 +∞
36 28 34 35 mpbir2an + ˙ : 0 +∞ × 0 +∞ 0 +∞
37 iitopon II TopOn 0 1
38 letopon ordTop TopOn *
39 resttopon ordTop TopOn * 0 +∞ * ordTop 𝑡 0 +∞ TopOn 0 +∞
40 38 19 39 mp2an ordTop 𝑡 0 +∞ TopOn 0 +∞
41 2 40 eqeltri J TopOn 0 +∞
42 3 oveqi F u + ˙ F v = F u + 𝑒 0 +∞ × 0 +∞ F v
43 1 xrge0iifcnv F : 0 1 1-1 onto 0 +∞ F -1 = y 0 +∞ if y = +∞ 0 e y
44 43 simpli F : 0 1 1-1 onto 0 +∞
45 f1of F : 0 1 1-1 onto 0 +∞ F : 0 1 0 +∞
46 44 45 ax-mp F : 0 1 0 +∞
47 46 ffvelrni u 0 1 F u 0 +∞
48 46 ffvelrni v 0 1 F v 0 +∞
49 ovres F u 0 +∞ F v 0 +∞ F u + 𝑒 0 +∞ × 0 +∞ F v = F u + 𝑒 F v
50 47 48 49 syl2an u 0 1 v 0 1 F u + 𝑒 0 +∞ × 0 +∞ F v = F u + 𝑒 F v
51 42 50 eqtrid u 0 1 v 0 1 F u + ˙ F v = F u + 𝑒 F v
52 1 2 xrge0iifhom u 0 1 v 0 1 F u v = F u + 𝑒 F v
53 13 eqcomd u 0 1 v 0 1 u v = u × 0 1 × 0 1 v
54 53 fveq2d u 0 1 v 0 1 F u v = F u × 0 1 × 0 1 v
55 51 52 54 3eqtr2rd u 0 1 v 0 1 F u × 0 1 × 0 1 v = F u + ˙ F v
56 eqid mulGrp fld 𝑠 0 1 = mulGrp fld 𝑠 0 1
57 56 iistmd mulGrp fld 𝑠 0 1 TopMnd
58 cnfldex fld V
59 ovex 0 1 V
60 eqid fld 𝑠 0 1 = fld 𝑠 0 1
61 eqid mulGrp fld = mulGrp fld
62 60 61 mgpress fld V 0 1 V mulGrp fld 𝑠 0 1 = mulGrp fld 𝑠 0 1
63 58 59 62 mp2an mulGrp fld 𝑠 0 1 = mulGrp fld 𝑠 0 1
64 60 dfii4 II = TopOpen fld 𝑠 0 1
65 63 64 mgptopn II = TopOpen mulGrp fld 𝑠 0 1
66 cnfldbas = Base fld
67 61 66 mgpbas = Base mulGrp fld
68 cnfldmul × = fld
69 61 68 mgpplusg × = + mulGrp fld
70 8 9 ax-mp × Fn ×
71 67 56 69 70 5 ressplusf + 𝑓 mulGrp fld 𝑠 0 1 = × 0 1 × 0 1
72 71 eqcomi × 0 1 × 0 1 = + 𝑓 mulGrp fld 𝑠 0 1
73 65 72 tmdcn mulGrp fld 𝑠 0 1 TopMnd × 0 1 × 0 1 II × t II Cn II
74 57 73 ax-mp × 0 1 × 0 1 II × t II Cn II
75 4 18 36 37 41 55 74 mndpluscn + ˙ J × t J Cn J