Description: The closed unit interval forms a topological monoid under multiplication. (Contributed by Thierry Arnoux, 25-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | df-iis | |
|
Assertion | iistmd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iis | |
|
2 | cnnrg | |
|
3 | nrgtrg | |
|
4 | eqid | |
|
5 | 4 | trgtmd | |
6 | 2 3 5 | mp2b | |
7 | unitsscn | |
|
8 | 1elunit | |
|
9 | iimulcl | |
|
10 | 9 | rgen2 | |
11 | nrgring | |
|
12 | 4 | ringmgp | |
13 | 2 11 12 | mp2b | |
14 | cnfldbas | |
|
15 | 4 14 | mgpbas | |
16 | cnfld1 | |
|
17 | 4 16 | ringidval | |
18 | cnfldmul | |
|
19 | 4 18 | mgpplusg | |
20 | 15 17 19 | issubm | |
21 | 13 20 | ax-mp | |
22 | 7 8 10 21 | mpbir3an | |
23 | 1 | submtmd | |
24 | 6 22 23 | mp2an | |