Metamath Proof Explorer


Theorem iistmd

Description: The closed unit interval forms a topological monoid under multiplication. (Contributed by Thierry Arnoux, 25-Mar-2017)

Ref Expression
Hypothesis df-iis I=mulGrpfld𝑠01
Assertion iistmd ITopMnd

Proof

Step Hyp Ref Expression
1 df-iis I=mulGrpfld𝑠01
2 cnnrg fldNrmRing
3 nrgtrg fldNrmRingfldTopRing
4 eqid mulGrpfld=mulGrpfld
5 4 trgtmd fldTopRingmulGrpfldTopMnd
6 2 3 5 mp2b mulGrpfldTopMnd
7 unitsscn 01
8 1elunit 101
9 iimulcl x01y01xy01
10 9 rgen2 x01y01xy01
11 nrgring fldNrmRingfldRing
12 4 ringmgp fldRingmulGrpfldMnd
13 2 11 12 mp2b mulGrpfldMnd
14 cnfldbas =Basefld
15 4 14 mgpbas =BasemulGrpfld
16 cnfld1 1=1fld
17 4 16 ringidval 1=0mulGrpfld
18 cnfldmul ×=fld
19 4 18 mgpplusg ×=+mulGrpfld
20 15 17 19 issubm mulGrpfldMnd01SubMndmulGrpfld01101x01y01xy01
21 13 20 ax-mp 01SubMndmulGrpfld01101x01y01xy01
22 7 8 10 21 mpbir3an 01SubMndmulGrpfld
23 1 submtmd mulGrpfldTopMnd01SubMndmulGrpfldITopMnd
24 6 22 23 mp2an ITopMnd