| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-iis |
|- I = ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) |
| 2 |
|
cnnrg |
|- CCfld e. NrmRing |
| 3 |
|
nrgtrg |
|- ( CCfld e. NrmRing -> CCfld e. TopRing ) |
| 4 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 5 |
4
|
trgtmd |
|- ( CCfld e. TopRing -> ( mulGrp ` CCfld ) e. TopMnd ) |
| 6 |
2 3 5
|
mp2b |
|- ( mulGrp ` CCfld ) e. TopMnd |
| 7 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
| 8 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 9 |
|
iimulcl |
|- ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) -> ( x x. y ) e. ( 0 [,] 1 ) ) |
| 10 |
9
|
rgen2 |
|- A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) |
| 11 |
|
nrgring |
|- ( CCfld e. NrmRing -> CCfld e. Ring ) |
| 12 |
4
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
| 13 |
2 11 12
|
mp2b |
|- ( mulGrp ` CCfld ) e. Mnd |
| 14 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 15 |
4 14
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 16 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
| 17 |
4 16
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
| 18 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 19 |
4 18
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 20 |
15 17 19
|
issubm |
|- ( ( mulGrp ` CCfld ) e. Mnd -> ( ( 0 [,] 1 ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( ( 0 [,] 1 ) C_ CC /\ 1 e. ( 0 [,] 1 ) /\ A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) ) ) ) |
| 21 |
13 20
|
ax-mp |
|- ( ( 0 [,] 1 ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( ( 0 [,] 1 ) C_ CC /\ 1 e. ( 0 [,] 1 ) /\ A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) ) ) |
| 22 |
7 8 10 21
|
mpbir3an |
|- ( 0 [,] 1 ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) |
| 23 |
1
|
submtmd |
|- ( ( ( mulGrp ` CCfld ) e. TopMnd /\ ( 0 [,] 1 ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) -> I e. TopMnd ) |
| 24 |
6 22 23
|
mp2an |
|- I e. TopMnd |